358
Solid Carbide Tools

VALUE AT THE SPINDLE ${ }^{\circledR}$

2022-2023 Drilling Solutions

Drill Matrix

Item				\star Be					PrefeBetter		ferred C	ut Typ		pe for Series ${ }^{\text {（blank）Not Recommended }}$								
				Material																		
Name／Series	Tool Type	Coolant Delivery	Page	Steel			Stainless Steel			Cast Iron			Non Ferrous			HRSA			Hard Steel			
Hi－PerCarb ${ }^{\text {® }} 142 \mathrm{P}$	High Performance Drill	Internal	4	\star	\star	\star	3	\％	认	\％	む	む	む	\star		＊	む	㗈	\star	む	3	
Hi－PerCarb ${ }^{\text {® }} 143 \mathrm{M}-\mathrm{S}$	High Performance Drill	Internal	24	i			\star	\star	\star	i	む	T	\bigcirc	\star		＊	\star	\star				
Hi－PerCarb ${ }^{\text {® }} 141 \mathrm{~K}$	High Performance Drill	Internal	36	i	s	\pm	\bigcirc		\bigcirc	\star	\star	\star	is	\pm		O		\bigcirc				
Hi－PerCarb ${ }^{\text {® }} 131 \mathrm{~N}$	High Performance Drill	External	44							O			\star	\star	\star	O						
Series 120	High Performance Drill	External	56												\star							
Hi－PerCarb ${ }^{\text {® }} 135$	High Performance Drill	External	60	\star	\star	\star	\star	呇	\star	む	む	む	\bigcirc	O		む	＊	む	\star	む	む	
Hi－PerCarb ${ }^{\text {® }} 146 \mathrm{U}$	High Performance Drill	Internal	84	\star																		
Hi－PerCarb ${ }^{\text {® }} 136 \mathrm{U}$	High Performance Drill	External	84	\star																		

Drill Matrix

Attributes

Material hardness and machinability affect speed, feed, and cut depths.
For dimensional and finish quality, a low TIR of the tool-holder assembly in the machine is critical: less than 0.1% drill diameter is preferred.
Spot drilling is not necessary in most situations if the drilling surface is machined flat ; spot drill point angle should be greater than drill point angle.
Liquid coolant (internal or external) such as oil based or synthetic is highly recommended for all drilling applications.
For proper cooling, lubrication and chip evacuation, ensure the coolant is supplied throughout the entire depth of the hole.
When liquid coolant cannot be applied for applications such as plastics or composites, clear the swarf with air or vacuum.
Depending on material machinability, a peck cycle may be neccesary for external coolant drills beyond $2 x$ or $3 x$ depths.

Diameter Range inch	Diameter Range mm	Tolerance	Length	Point Angle ${ }^{\circ}$	Self Centering	Flute Count	Margins	Helix Angle ${ }^{\circ}$	Shank	Coating
$\begin{aligned} & 0.1250 \\ & 0.7500 \end{aligned}$	$\begin{gathered} 3,00 \\ 16,00 \end{gathered}$	+/ +	$\begin{gathered} 3 x, 5 x, 8 x \\ 12 x \end{gathered}$	135	yes	2	4	30	Common	Ti-NAMITE ${ }^{\text {® }}$-X
$\begin{aligned} & 0.1250 \\ & 0.7500 \end{aligned}$	$\begin{gathered} 3,00 \\ 16,00 \end{gathered}$	+ / +	$3 x, 5 x$	135	yes	2	2	30	Common	Ti-NAMITE ${ }^{\text {® }}$-A
$\begin{aligned} & 0.1250 \\ & 0.7500 \end{aligned}$	$\begin{gathered} 3,00 \\ 16,00 \end{gathered}$	+ / +	5 x	124	yes	3	3	30	Common	Ti-NAMITE ${ }^{\text {® }}$-X
$\begin{aligned} & 0.1250 \\ & 0.7500 \end{aligned}$	$\begin{gathered} 3,00 \\ 16,00 \end{gathered}$	+ / +	$3 x, 5 x$	124	yes	3	3	30	Common	Ti-NAMITE ${ }^{\text {® }}$-B
$\begin{aligned} & 0.0980 \\ & 0.5000 \end{aligned}$	$\begin{gathered} 2,70 \\ 12,00 \end{gathered}$	+ / -	3 x	145,90	yes	2	4	20	Common	Di-NAMITE ${ }^{\text {® }}$
$\begin{aligned} & 0.0156 \\ & 0.9219 \end{aligned}$	$\begin{gathered} 1,25 \\ 22,00 \end{gathered}$	+ / +	$3 x, 5 x$	145	yes	2	4	32	Common	Ti-NAMITE ${ }^{\text {® }}$-A
$\begin{aligned} & 0.1250 \\ & 0.8125 \end{aligned}$	$\begin{gathered} 3,00 \\ 20,50 \end{gathered}$	+ / +	$3 x, 5 x$	180	yes	2	4	15	Common	Ti-NAMITE®-X
$\begin{aligned} & 0.0625 \\ & 0.8125 \end{aligned}$	$\begin{gathered} 1,50 \\ 20,50 \end{gathered}$	+ / +	2 x	180	yes	2	4	15	Common	Ti-NAMITE ${ }^{\text {® }}$-X

SERIES 142P

(A) $\frac{\text { 4-MARGIN DESIGN }}{\bullet}$
contact improves hole straightness and roundness

- provides improved stability for difficult applications like cross holes and when exiting on an angle
(B) $\frac{\text { POINT }}{\bullet \text { point design stabilizes on entry for }}$ exceptional hole size and cylindricity
- low thrust force reduces machine power requirement and extends tool life
- easily resharpened 142P Drill allow the product to offer application benefits not only beyond that of standard carbide drills, but also other High Performance drills. Each feature of the Hi-PerCarb ${ }^{\circledR}$ Series 142P Drill was uniquely engineered as a solution towards addressing the issues commonly encountered during high production drilling.

PERFORMANCE.

TESTING PARAMETERS

- 3/8" Diameter
- 8XD Length of Cut
- 4140 Alloy Steel
- 3360 rpm
- 30 ipm
- 3.0" axial depth - blind
- TSC - Water Sol 8.9\%

HOLE FINISH TEST RESULTS

The lower numerical value shown in the chart demonstrates an improved surface finish in alloy steel versus other competitors tested.

TOOL LIFE

All tools were tested until catastrophic failure, and under these conditions, the HI-PERCARB ${ }^{\circledR}$ 142P produced the most holes versus the competition.

CYLINDRICITY

CMM measurements of 14 random holes per competitor indicate the 142P cylindricity is the best among those tested.

HOLE FINISH

TOOL LIFE

CYLINDRICITY

The structural design of Ti-NAMITE ${ }^{\oplus}-\mathrm{X}$ is adapted to meet a diverse range of applications; everything from high- and low- alloy steels to hardened materials (up to 65 HRC core hardness). Ti-NAMITE ${ }^{\oplus}-\mathrm{X}$ is suitable for operations which require high cutting speeds, high temperatures at the cutting edge, and high metal removal rates.

Hardness (HV): $\mathbf{3 6 0 0}$

Oxidation Temperature: $1150^{\circ} \mathrm{C}-2100^{\circ} \mathrm{F}$
Coefficient of Friction: $\mathbf{0 . 4 5}$
Thickness: 1 - 4 Microns (based on tool diameter)

FRACTIONAL \& METRIC Series 142P
Common \mid Reach

- High-performance point
design stabilizes on
entry for exceptional
hole size and cylindricity
while also allowing for
low thrust force and
extended tool life
- Internal coolant hole
improves coolant flow to
extend tool life and aid
in chip evacuation
- 4-margin design
improves hole
straightness and
roundness while
providing improved
stability for difficult
applications like cross
holes and when exiting
on angle
- Proprietary Ti-NAMITE \oplus-X
coating and industry
leading carbide substrate
provides exceptional
wear resistance and
toughness for demanding
applications
- Recommended for
materials $\leq 50 H R$ c
(475 Bhn)

| Inch \& mm | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TOLERANCES (inch) <. 1181 DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON = h_{6}
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON = h_{6}
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

| STEELS |
| :--- | :--- |
| STAINLESS STEELS |
| CAST IRON |
| NON-FERROUS |
| HIGH TEMP ALLOYS |
| HARDENED STEELS |
| |
| For patent
 information visit
 www.ksptpatents.com |

inch \& mm								EDP NO.	CONTINUED
$\underset{\text { DC }}{\text { DECIMAL }}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGH } \\ \text { LCFF } \end{gathered}$	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{(T X)}{\text { Ti-NAMITE }}$	
0.2559	6,500 mm		8,0	79,0	34,0	24,0	36,0	66435	
0.2570	6,528 mm	F	8,0	79,0	34,0	24,0	36,0	56411	
0.2598	6,600 mm		8,0	79,0	34,0	24,0	36,0	66436	
0.2638	6,700 mm		8,0	79,0	34,0	24,0	36,0	66437	
0.2656	6,746 mm	17/64	8,0	79,0	34,0	24,0	36,0	56412	
0.2677	6,800 mm		8,0	79,0	34,0	24,0	36,0	66438	
0.2717	6,900 mm		8,0	79,0	34,0	24,0	36,0	66439	
0.2756	7,000 mm		8,0	79,0	34,0	24,0	36,0	66440	
0.2795	7,100 mm		8,0	79,0	41,0	30,0	36,0	66441	
0.2812	7,142 mm	9/32	8,0	79,0	41,0	30,0	36,0	56413	
0.2835	7,200 mm		8,0	79,0	41,0	30,0	36,0	66442	
0.2874	7,300 mm		8,0	79,0	41,0	30,0	36,0	66443	
0.2913	$7,400 \mathrm{~mm}$		8,0	79,0	41,0	30,0	36,0	66444	
0.2953	7,500 mm		8,0	79,0	41,0	30,0	36,0	66445	
0.2969	7,541 mm	19/64	8,0	79,0	41,0	30,0	36,0	56414	
0.2992	7,600 mm		8,0	79,0	41,0	30,0	36,0	66446	
0.3031	7,700 mm		8,0	79,0	41,0	29,0	36,0	66447	
0.3071	$7,800 \mathrm{~mm}$		8,0	79,0	41,0	29,0	36,0	66448	
0.3110	7,900 mm		8,0	79,0	41,0	29,0	36,0	66449	
0.3125	7,938 mm	5/16	8,0	79,0	41,0	29,0	36,0	56415	
0.3150	$8,000 \mathrm{~mm}$		8,0	79,0	41,0	29,0	36,0	66450	
0.3189	$8,100 \mathrm{~mm}$		10,0	89,0	47,0	35,0	40,0	66451	
0.3228	$8,200 \mathrm{~mm}$		10,0	89,0	47,0	35,0	40,0	66452	
0.3268	$8,300 \mathrm{~mm}$		10,0	89,0	47,0	35,0	40,0	66453	
0.3281	$8,334 \mathrm{~mm}$	21/64	10,0	89,0	47,0	34,0	40,0	56416	
0.3307	$8,400 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	66454	
0.3320	$8,433 \mathrm{~mm}$	0	10,0	89,0	47,0	34,0	40,0	56417	
0.3346	$8,500 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	66455	
0.3386	$8,600 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	66456	
0.3425	8,700 mm		10,0	89,0	47,0	34,0	40,0	66457	
0.3438	8,733 mm	11/32	10,0	89,0	47,0	34,0	40,0	56418	
0.3465	$8,800 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	66458	
0.3504	$8,900 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	66459	
0.3543	$9,000 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	66460	
0.3583	9,100 mm		10,0	89,0	47,0	33,0	40,0	66461	
0.3594	9,129 mm	23/64	10,0	89,0	47,0	33,0	40,0	56419	
0.3622	9,200 mm		10,0	89,0	47,0	33,0	40,0	66462	
0.3661	9,300 mm		10,0	89,0	47,0	33,0	40,0	66463	
0.3680	9,347 mm	U	10,0	89,0	47,0	33,0	40,0	56420	
0.3701	$9,400 \mathrm{~mm}$		10,0	89,0	47,0	33,0	40,0	66464	
0.3740	9,500 mm		10,0	89,0	47,0	33,0	40,0	66465	
0.3750	9,525 mm	3/8	10,0	89,0	47,0	33,0	40,0	56421	
0.3780	9,600 mm		10,0	89,0	47,0	33,0	40,0	66466	
0.3819	9,700 mm		10,0	89,0	47,0	32,0	40,0	66467	
0.3858	9,800 mm		10,0	89,0	47,0	32,0	40,0	66468	
0.3898	9,900 mm		10,0	89,0	47,0	32,0	40,0	66469	
0.3906	9,921 mm	25/64	10,0	89,0	47,0	32,0	40,0	56422	
0.3937	$10,000 \mathrm{~mm}$		10,0	89,0	47,0	32,0	40,0	66470	
0.3976	10,100 mm		12,0	102,0	55,0	40,0	45,0	66471	
0.4016	10,200 mm		12,0	102,0	55,0	40,0	45,0	66472	
0.4055	$10,300 \mathrm{~mm}$		12,0	102,0	55,0	40,0	45,0	66473	
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	102,0	55,0	40,0	45,0	56423	
0.4095	$10,400 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	66474	
0.4134	10,500 mm		12,0	102,0	55,0	39,0	45,0	66475	
							continued	on next page	

FRACTIONAL \& METRIC Series 142P

- High-performance point
design stabilizes on
entry for exceptional
hole size and cylindricity
while also allowing for
low thrust force and
extended tool life
- Internal coolant hole
improves coolant flow to
extend tool life and aid
in chip evacuation
- 4-margin design
improves hole
straightness and
roundness while
providing improved
stability for difficult
applications like cross
holes and when exiting
on angle
- Proprietary Ti-NAMITE - -X
coating and industry
leading carbide substrate
provides exceptional
wear resistance and
toughness for demanding
applications
- Recommended for
materials $\leq 50 H R c$
(475 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{(T X)}{\text { Ti-NAMITE }-X ~}$
0.4173	10,600 mm		12,0	102,0	55,0	39,0	45,0	66476
0.4213	10,700 mm		12,0	102,0	55,0	39,0	45,0	66477
0.4219	10,716 mm	27/64	12,0	102,0	55,0	39,0	45,0	56424
0.4252	$10,800 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	66478
0.4291	$10,900 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	66479
0.4331	$11,000 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	66480
0.4370	$11,100 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	66481
0.4375	11,113 mm	7/16	12,0	102,0	55,0	38,0	45,0	56425
0.4409	$11,200 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	66482
0.4449	$11,300 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	66483
0.4488	$11,400 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	66484
0.4528	$11,500 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	66485
0.4567	$11,600 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	66486
0.4606	11,700 mm		12,0	102,0	55,0	37,0	45,0	66487
0.4646	$11,800 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	66488
0.4685	$11,900 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	66489
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	102,0	55,0	37,0	45,0	56426
0.4724	$12,000 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	66490
0.4844	12,304 mm	31/64	14,0	107,0	60,0	41,0	45,0	56427
0.4921	$12,500 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	66491
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	107,0	60,0	41,0	45,0	56428
0.5039	$12,800 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	66492
0.5118	$13,000 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	66493
0.5156	13,096 mm	33/64	14,0	107,0	60,0	40,0	45,0	56429
0.5315	$13,500 \mathrm{~mm}$		14,0	107,0	60,0	40,0	45,0	66494
0.5433	$13,800 \mathrm{~mm}$		14,0	107,0	60,0	39,0	45,0	66495
0.5512	$14,000 \mathrm{~mm}$		14,0	107,0	60,0	39,0	45,0	66496
0.5625	14,288 mm	9/16	16,0	115,0	65,0	43,0	48,0	56430
0.5709	$14,500 \mathrm{~mm}$		16,0	115,0	65,0	43,0	48,0	66497
0.5781	14,684 mm	37/64	16,0	115,0	65,0	43,0	48,0	56431
0.5827	14,800 mm		16,0	115,0	65,0	43,0	48,0	66498
0.5906	15,000 mm		16,0	115,0	65,0	42,0	48,0	66499
0.6102	15,500 mm		16,0	115,0	65,0	42,0	48,0	66500
0.6221	15,800 mm		16,0	115,0	65,0	41,0	48,0	66501
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	115,0	65,0	41,0	48,0	56432
0.6299	$16,000 \mathrm{~mm}$		16,0	115,0	65,0	41,0	48,0	66502
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	123,0	73,0	47,0	48,0	56433
0.6875	17,463 mm	11/16	18,0	123,0	73,0	47,0	48,0	56434
0.7500	19,050 mm	3/4	20,0	131,0	79,0	50,0	50,0	56435

TOLERANCES (inch) $\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON = h_{6}
>.3937-. 7087 DIAMETER
DC = +.00028/+.00098 DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON = h_{6}
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS

For patent
information visit www.ksptpatents.com

TOLERANCES (inch)				$\frac{1}{\mathrm{CON}}$					142P 5xD FRACTIONAL \& METRIC SERIES	
		inch \& mm							EDP NO.	- High-performance point design stabilizes on entry for exceptional hole size and cylindricity while also allowing for low thrust force and extended tool life
$\leq .1181$ DIAMETER DC $=+.00008 /+.00047$	$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{gathered} \text { SHANK } \\ \text { DIAMETER } \\ \text { DCON } \end{gathered}$	OVERALL Lengit OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	SHANK LENGTH LS	$\begin{gathered} \text { Ti-NAMITE }{ }^{\text {T }} \text { (TXX } \end{gathered}$	
DCON $=\mathrm{h}_{6}$	0.1181	$3,000 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	66503	
>.1181-. 2362 DIAMETER	0.1220	3,100 mm		6,0	66,0	28,0	23,0	36,0	66504	
DC $=+.00016 /+.00063$	0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	66,0	28,0	23,0	36,0	56436	
DCON $=h_{6}$	0.1260	3,200 mm		6,0	66,0	28,0	23,0	36,0	66505	- Internal coolant hole improves coolant flow to extend tool life and aid in chip evacuation
>.2362-. 3937 DIAMETER	0.1299	$3,300 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	66506	
DC $=+.00024 /+.00083$	0.1339	$3,400 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	66507	
DCON $=h_{6}$	0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	66,0	28,0	23,0	36,0	56437	- 4-margin design improves hole straightness and roundness while providing improved stability for difficult applications like cross holes and when exiting on angle
>.3937-7087 DIAMETER	0.1378	3,500 mm		6,0	66,0	28,0	23,0	36,0	66508	
DC $=+.00028 /+.00098$	0.1406	3,571 mm	9/64	6,0	66,0	28,0	23,0	36,0	56438	
DCON $=\mathrm{h}_{6}$	0.1417	3,600 mm		6,0	66,0	28,0	23,0	36,0	66509	
>.7087-1.1811 DIAMETER	0.1457	3,700 mm		6,0	66,0	28,0	23,0	36,0	66510	
DC $=+.00031 /+.00114$	0.1496	3,800 mm		6,0	74,0	36,0	29,0	36,0	66511	
DCON $=\mathrm{h}_{6}$	0.1535	$3,900 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	66512	
	0.1562	$3,967 \mathrm{~mm}$	5/32	6,0	74,0	36,0	29,0	36,0	56439	- Proprietary Ti-NAMITE ${ }^{\oplus}-\mathrm{X}$ coating and industry leading carbide substrate provides exceptional wear resistance and toughness for demanding applications
TOLERANCES (mm)	0.1575	4,000 mm		6,0	74,0	36,0	29,0	36,0	66513	
	0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	74,0	36,0	29,0	36,0	56440	
$\text { DC } \quad=+0,002 /+0,012$	0.1614	$4,100 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	66514	
$\begin{aligned} & \text { DC }=+0,002 /+0,012 \\ & \text { DCON }=h_{5} \end{aligned}$	0.1654	$4,200 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	66515	
$\begin{aligned} & >3-6 \text { DIAMETER } \\ & \text { DC }=+0,004 /+0,016 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1693	$4,300 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	66516	
	0.1719	4,366 mm	11/64	6,0	74,0	36,0	29,0	36,0	56441	- Recommended for materials $\leq 50 \mathrm{HRc}$ (475 Bhn)
	0.1732	$4,400 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	66517	
	0.1772	$4,500 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	66518	
>6-10 DIAMETER DC $=+0,006 /+0,021$ DCON $=h_{6}$	0.1811	$4,600 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	66519	
	0.1850	$4,699 \mathrm{~mm}$	\#13	6,0	74,0	36,0	29,0	36,0	66520	
	0.1875	$4,763 \mathrm{~mm}$	3/16	6,0	82,0	44,0	37,0	36,0	56442	
>10-18 DIAMETER DC $=+0,007 /+0,025$ DCON $=h_{6}$	0.1890	4,801 mm	\#12	6,0	82,0	44,0	37,0	36,0	66521	
	0.1929	$4,900 \mathrm{~mm}$		6,0	82,0	44,0	37,0	36,0	66522	
	0.1969	$5,000 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	66523	
>18-30 DIAMETER DC $=+0,008 /+0,029$ DCON $=h_{6}$	0.2008	$5,100 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	66524	
	0.2031	$5,159 \mathrm{~mm}$	13/64	6,0	82,0	44,0	36,0	36,0	56443	
	0.2047	$5,200 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	66525	
STEELS	0.2087	$5,300 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	66526	
	0.2126	$5,400 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	66527	
STAINLESS STEELS	0.2165	$5,500 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	66528	
	0.2188	5,558 mm	7/32	6,0	82,0	44,0	36,0	36,0	56444	
CASTIRON	0.2205	$5,600 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	66529	
NON-FERROUS	0.2244	$5,700 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	66530	
HIGHTEMP ALLOYS	0.2283	$5,800 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	66531	
	0.2323	$5,900 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	66532	
hardened steels	0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	82,0	44,0	35,0	36,0	56445	
	0.2362	6,000 mm		6,0	82,0	44,0	35,0	36,0	66533	
For patent information visit www.ksptpatents.com	0.2402	6,100 mm		8,0	91,0	53,0	44,0	36,0	66534	
	0.2441	$6,200 \mathrm{~mm}$		8,0	91,0	53,0	44,0	36,0	66535	
	0.2480	6,300 mm		8,0	91,0	53,0	44,0	36,0	66536	
								continued on next page		

FRACTIONAL \& METRIC
Series 142P

- High-performance point
design stabilizes on
entry for exceptional
hole size and cylindricity
while also allowing for
low thrust force and
extended tool life
- Internal coolant hole
improves coolant flow to
extend tool life and aid
in chip evacuation
- 4-margin design
improves hole
straightness and
roundness while
providing improved
stability for difficult
applications like cross
holes and when exiting
on angle
- Proprietary Ti-NAMITE - -X
coating and industry
leading carbide substrate
provides exceptional
wear resistance and
toughness for demanding
applications
- Recommended for
materials $\leq 50 H R c$
(475 Bhn)

inch \& mm								EDP NO.
$\begin{gathered} \text { DECIMAL } \\ \text { DC } \end{gathered}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{\text { (TX) }}{\text { Ti-NAMITE }-X ~}$
0.2500	6,350 mm	1/4 E \#0	8,0	91,0	53,0	43,0	36,0	56446
0.2520	6,400 mm		8,0	91,0	53,0	43,0	36,0	66537
0.2559	6,500 mm		8,0	91,0	53,0	43,0	36,0	66538
0.2570	6,528 mm	F	8,0	91,0	53,0	43,0	36,0	56447
0.2598	6,600 mm		8,0	91,0	53,0	43,0	36,0	66539
0.2638	6,700 mm		8,0	91,0	53,0	43,0	36,0	66540
0.2656	6,746 mm	17/64	8,0	91,0	53,0	43,0	36,0	56448
0.2677	6,800 mm		8,0	91,0	53,0	43,0	36,0	66541
0.2717	6,900 mm		8,0	91,0	53,0	43,0	36,0	66542
0.2756	7,000 mm		8,0	91,0	53,0	42,0	36,0	66543
0.2795	7,100 mm		8,0	91,0	53,0	42,0	36,0	66544
0.2812	7,142 mm	9/32	8,0	91,0	53,0	42,0	36,0	56449
0.2835	7,200 mm		8,0	91,0	53,0	42,0	36,0	66545
0.2874	7,300 mm		8,0	91,0	53,0	42,0	36,0	66546
0.2913	$7,400 \mathrm{~mm}$		8,0	91,0	53,0	42,0	36,0	66547
0.2953	7,500 mm		8,0	91,0	53,0	42,0	36,0	66548
0.2969	7,541 mm	19/64	8,0	91,0	53,0	42,0	36,0	56450
0.2992	7,600 mm		8,0	91,0	53,0	42,0	36,0	66549
0.3031	7,700 mm		8,0	91,0	53,0	41,0	36,0	66550
0.3071	7,800 mm		8,0	91,0	53,0	41,0	36,0	66551
0.3110	7,900 mm		8,0	91,0	53,0	41,0	36,0	66552
0.3125	$7,938 \mathrm{~mm}$	5/16	8,0	91,0	53,0	41,0	36,0	56451
0.3150	8,000 mm		8,0	91,0	53,0	41,0	36,0	66553
0.3189	$8,100 \mathrm{~mm}$		10,0	103,0	61,0	49,0	40,0	66554
0.3228	$8,200 \mathrm{~mm}$		10,0	103,0	61,0	49,0	40,0	66555
0.3268	8,300 mm		10,0	103,0	61,0	49,0	40,0	66556
0.3281	$8,334 \mathrm{~mm}$	21/64	10,0	103,0	61,0	48,0	40,0	56452
0.3307	$8,400 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	66557
0.3320	8,433 mm	0	10,0	103,0	61,0	48,0	40,0	56453
0.3346	$8,500 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	66558
0.3386	$8,600 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	66559
0.3425	8,700 mm		10,0	103,0	61,0	48,0	40,0	66560
0.3438	$8,733 \mathrm{~mm}$	11/32	10,0	103,0	61,0	48,0	40,0	56454
0.3465	8,800 mm		10,0	103,0	61,0	48,0	40,0	66561
0.3504	$8,900 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	66562
0.3543	$9,000 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	66563
0.3583	$9,100 \mathrm{~mm}$		10,0	103,0	61,0	47,0	40,0	66564
0.3594	9,129 mm	23/64	10,0	103,0	61,0	47,0	40,0	56455
0.3622	9,200 mm		10,0	103,0	61,0	47,0	40,0	66565
0.3661	9,300 mm		10,0	103,0	61,0	47,0	40,0	66566
0.3680	9,347 mm	U	10,0	103,0	61,0	47,0	40,0	56456
0.3701	$9,400 \mathrm{~mm}$		10,0	103,0	61,0	47,0	40,0	66567
0.3740	$9,500 \mathrm{~mm}$		10,0	103,0	61,0	47,0	40,0	66568
0.3750	9,525 mm	3/8	10,0	103,0	61,0	47,0	40,0	56457

TOLERANCES (inch) $\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$
DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON = h_{6}
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGHTEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

inch \& mm								EDP NO.	CONTINUED
$\underset{\text { DC }}{\text { DECIMAL }}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{\text { (TX) }}{\text { Ti-NAMITE }-X ~}$	
0.3780	9,600 mm		10,0	103,0	61,0	47,0	40,0	66569	
0.3819	9,700 mm		10,0	103,0	61,0	46,0	40,0	66570	
0.3858	9,800 mm		10,0	103,0	61,0	46,0	40,0	66571	
0.3898	9,900 mm		10,0	103,0	61,0	46,0	40,0	66572	
0.3906	9,921 mm	25/64	10,0	103,0	61,0	46,0	40,0	56458	
0.3937	$10,000 \mathrm{~mm}$		10,0	103,0	61,0	46,0	40,0	66573	
0.3976	10,100 mm		12,0	118,0	71,0	56,0	45,0	66574	
0.4016	10,200 mm		12,0	118,0	71,0	56,0	45,0	66575	
0.4055	10,300 mm		12,0	118,0	71,0	56,0	45,0	66576	
0.4062	10,317 mm	13/32	12,0	118,0	71,0	56,0	45,0	56459	
0.4095	10,400 mm		12,0	118,0	71,0	55,0	45,0	66577	
0.4134	10,500 mm		12,0	118,0	71,0	55,0	45,0	66578	
0.4173	10,600 mm		12,0	118,0	71,0	55,0	45,0	66579	
0.4213	10,700 mm		12,0	118,0	71,0	55,0	45,0	66580	
0.4219	10,716 mm	27/64	12,0	118,0	71,0	55,0	45,0	56460	
0.4252	10,800 mm		12,0	118,0	71,0	55,0	45,0	66581	
0.4291	$10,900 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	66582	
0.4331	$11,000 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	66583	
0.4370	$11,100 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	66584	
0.4375	11,113 mm	7/16	12,0	118,0	71,0	54,0	45,0	56461	
0.4409	$11,200 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	66585	
0.4449	$11,300 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	66586	
0.4488	$11,400 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	66587	
0.4528	$11,500 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	66588	
0.4567	$11,600 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	66589	
0.4606	$11,700 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	66590	
0.4646	$11,800 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	66591	
0.4685	$11,900 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	66592	
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	118,0	71,0	53,0	45,0	56462	
0.4724	$12,000 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	66593	
0.4844	$12,304 \mathrm{~mm}$	31/64	14,0	124,0	77,0	58,0	45,0	56463	
0.4921	$12,500 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	66594	
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	124,0	77,0	58,0	45,0	56464	
0.5039	$12,800 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	66595	
0.5118	$13,000 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	66596	
0.5156	13,096 mm	33/64	14,0	124,0	77,0	57,0	45,0	56465	
0.5315	$13,500 \mathrm{~mm}$		14,0	124,0	77,0	57,0	45,0	66597	
0.5433	13,800 mm		14,0	124,0	77,0	56,0	45,0	66598	
0.5512	$14,000 \mathrm{~mm}$		14,0	124,0	77,0	56,0	45,0	66599	
0.5625	14,288 mm	9/16	16,0	133,0	83,0	61,0	48,0	56466	
0.5709	$14,500 \mathrm{~mm}$		16,0	133,0	83,0	61,0	48,0	66600	
0.5781	14,684 mm	37/64	16,0	133,0	83,0	61,0	48,0	56467	
0.5827	$14,800 \mathrm{~mm}$		16,0	133,0	83,0	61,0	48,0	66601	
0.5906	15,000 mm		16,0	133,0	83,0	60,0	48,0	66602	
0.6102	$15,500 \mathrm{~mm}$		16,0	133,0	83,0	60,0	48,0	66603	
0.6221	15,800 mm		16,0	133,0	83,0	59,0	48,0	66604	
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	133,0	83,0	59,0	48,0	56468	
0.6299	16,000 mm		16,0	133,0	83,0	59,0	48,0	66605	
0.6562	16,667 mm	21/32	18,0	143,0	93,0	68,0	48,0	56469	
0.6875	17,463 mm	11/16	18,0	143,0	93,0	67,0	48,0	56470	
0.7500	19,050 mm	3/4	20,0	153,0	101,0	72,0	50,0	56471	

FRACTIONAL \& METRIC
Series 142P
\square
Common
$82 \pi \sqrt{0}$
Reach
Helix Angle
Internal
Point Angle
Margins
$\underset{\text { fractional \& MEtric series }}{\text { 142P }}$

- High-performance point design stabilizes on entry for exceptional hole size and cylindricity while also allowing for low thrust force and extended tool life
- Internal coolant hole improves coolant flow to extend tool life and aid in chip evacuation
- 4-margin design improves hole straightness and roundness while providing improved stability for difficult applications like cross holes and when exiting on angle
- Proprietary Ti-NAMITE ${ }^{\oplus}-\mathrm{X}$ coating and industry leading carbide substrate provides exceptional wear resistance and toughness for demanding applications
- Recommended for materials $\leq 50 \mathrm{HRc}$ (475 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \\ & \text { LCFF } \end{aligned}$	USABLE LENGTH LU	SHANK LENGTH LS	$\begin{gathered} \text { Ti-NAMITE }{ }^{\bullet}-\mathrm{X} \\ \text { (TX) } \end{gathered}$
0.1181	3,000 mm		6,0	72,0	34,0	29,0	36,0	66606
0.1220	3,100 mm		6,0	72,0	34,0	29,0	36,0	66607
0.1250	3,175 mm	1/8	6,0	72,0	34,0	29,0	36,0	56472
0.1260	3,200 mm		6,0	72,0	34,0	29,0	36,0	66608
0.1299	3,300 mm		6,0	72,0	34,0	29,0	36,0	66609
0.1339	3,400 mm		6,0	72,0	34,0	29,0	36,0	66610
0.1360	3,454 mm	\#29	6,0	72,0	34,0	29,0	36,0	56473
0.1378	3,500 mm		6,0	72,0	34,0	29,0	36,0	66611
0.1406	3,571 mm	9/64	6,0	72,0	34,0	29,0	36,0	56474
0.1417	3,600 mm		6,0	72,0	34,0	29,0	36,0	66612
0.1457	3,700 mm		6,0	72,0	34,0	29,0	36,0	66613
0.1496	3,800 mm		6,0	81,0	43,0	37,0	36,0	66614
0.1535	3,900 mm		6,0	81,0	43,0	37,0	36,0	66615
0.1562	3,967 mm	5/32	6,0	81,0	43,0	37,0	36,0	56475
0.1575	4,000 mm		6,0	81,0	43,0	37,0	36,0	66616
0.1590	4,039 mm	\#21	6,0	81,0	43,0	37,0	36,0	56476
0.1614	4,100 mm		6,0	81,0	43,0	37,0	36,0	66617
0.1654	4,200 mm		6,0	81,0	43,0	37,0	36,0	66618
0.1693	4,300 mm		6,0	81,0	43,0	37,0	36,0	66619
0.1719	4,366 mm	11/64	6,0	81,0	43,0	36,0	36,0	56477
0.1732	4,400 mm		6,0	81,0	43,0	36,0	36,0	66620
0.1772	4,500 mm		6,0	81,0	43,0	36,0	36,0	66621
0.1811	4,600 mm		6,0	81,0	43,0	36,0	36,0	66622
0.1850	4,699 mm	\#13	6,0	81,0	43,0	36,0	36,0	66623
0.1875	4,763 mm	3/16	6,0	95,0	57,0	50,0	36,0	56478
0.1890	4,801 mm	\#12	6,0	95,0	57,0	50,0	36,0	66624
0.1929	4,900 mm		6,0	95,0	57,0	50,0	36,0	66625
0.1969	5,000 mm		6,0	95,0	57,0	49,0	36,0	66626
0.2008	5,100 mm		6,0	95,0	57,0	49,0	36,0	66627
0.2031	5,159 mm	13/64	6,0	95,0	57,0	49,0	36,0	56479
0.2047	5,200 mm		6,0	95,0	57,0	49,0	36,0	66628
0.2087	5,300 mm		6,0	95,0	57,0	49,0	36,0	66629
0.2126	$5,400 \mathrm{~mm}$		6,0	95,0	57,0	49,0	36,0	66630
0.2165	5,500 mm		6,0	95,0	57,0	49,0	36,0	66631
0.2188	$5,558 \mathrm{~mm}$	7/32	6,0	95,0	57,0	49,0	36,0	56480
0.2205	5,600 mm		6,0	95,0	57,0	49,0	36,0	66632
0.2244	$5,700 \mathrm{~mm}$		6,0	95,0	57,0	48,0	36,0	66633
0.2283	5,800 mm		6,0	95,0	57,0	48,0	36,0	66634
							continued	on next page

TOLERANCES (inch) $\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON = h_{6}
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

inch \& mm								EDP NO .
$\begin{gathered} \text { DECIMAL } \\ \text { DC } \end{gathered}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGGH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{(T X)}{\text { Ti-NAMITE }}$
0.2323	$5,900 \mathrm{~mm}$		6,0	95,0	57,0	48,0	36,0	66635
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	95,0	57,0	48,0	36,0	56481
0.2362	6,000 mm		6,0	95,0	57,0	48,0	36,0	66636
0.2402	6,100 mm		8,0	114,0	76,0	67,0	36,0	66637
0.2441	6,200 mm		8,0	114,0	76,0	67,0	36,0	66638
0.2480	6,300 mm		8,0	114,0	76,0	67,0	36,0	66639
0.2500	$6,350 \mathrm{~mm}$	1/4 E \#0	8,0	114,0	76,0	66,0	36,0	56482
0.2520	$6,400 \mathrm{~mm}$		8,0	114,0	76,0	66,0	36,0	66640
0.2559	6,500 mm		8,0	114,0	76,0	66,0	36,0	66641
0.2570	6,528 mm	F	8,0	114,0	76,0	66,0	36,0	56483
0.2598	6,600 mm		8,0	114,0	76,0	66,0	36,0	66642
0.2638	6,700 mm		8,0	114,0	76,0	66,0	36,0	66643
0.2656	6,746 mm	17/64	8,0	114,0	76,0	66,0	36,0	56484
0.2677	6,800 mm		8,0	114,0	76,0	66,0	36,0	66644
0.2717	6,900 mm		8,0	114,0	76,0	66,0	36,0	66645
0.2756	7,000 mm		8,0	114,0	76,0	65,0	36,0	66646
0.2795	7,100 mm		8,0	114,0	76,0	65,0	36,0	66647
0.2812	7,142 mm	9/32	8,0	114,0	76,0	65,0	36,0	56485
0.2835	7,200 mm		8,0	114,0	76,0	65,0	36,0	66648
0.2874	$7,300 \mathrm{~mm}$		8,0	114,0	76,0	65,0	36,0	66649
0.2913	$7,400 \mathrm{~mm}$		8,0	114,0	76,0	65,0	36,0	66650
0.2953	$7,500 \mathrm{~mm}$		8,0	114,0	76,0	65,0	36,0	66651
0.2969	7,541 mm	19/64	8,0	114,0	76,0	65,0	36,0	56486
0.2992	7,600 mm		8,0	114,0	76,0	65,0	36,0	66652
0.3031	7,700 mm		8,0	114,0	76,0	64,0	36,0	66653
0.3071	$7,800 \mathrm{~mm}$		8,0	114,0	76,0	64,0	36,0	66654
0.3110	7,900 mm		8,0	114,0	76,0	64,0	36,0	66655
0.3125	7,938 mm	5/16	8,0	114,0	76,0	64,0	36,0	56487
0.3150	$8,000 \mathrm{~mm}$		8,0	114,0	76,0	64,0	36,0	66656
0.3189	$8,100 \mathrm{~mm}$		10,0	142,0	95,0	83,0	40,0	66657
0.3228	$8,200 \mathrm{~mm}$		10,0	142,0	95,0	83,0	40,0	66658
0.3268	8,300 mm		10,0	142,0	95,0	83,0	40,0	66659
0.3281	8,334 mm	21/64	10,0	142,0	95,0	83,0	40,0	56488
0.3307	$8,400 \mathrm{~mm}$		10,0	142,0	95,0	82,0	40,0	66660
0.3320	$8,433 \mathrm{~mm}$	0	10,0	142,0	95,0	82,0	40,0	56489
0.3346	8,500 mm		10,0	142,0	95,0	82,0	40,0	66661
0.3386	8,600 mm		10,0	142,0	95,0	82,0	40,0	66662
0.3425	8,700 mm		10,0	142,0	95,0	82,0	40,0	66663
0.3438	8,733 mm	11/32	10,0	142,0	95,0	82,0	40,0	56490
0.3465	8,800 mm		10,0	142,0	95,0	82,0	40,0	66664
0.3504	8,900 mm		10,0	142,0	95,0	82,0	40,0	66665
0.3543	9,000 mm		10,0	142,0	95,0	82,0	40,0	66666
0.3583	9,100 mm		10,0	142,0	95,0	81,0	40,0	66667
0.3594	9,129 mm	23/64	10,0	142,0	95,0	81,0	40,0	56491

FRACTIONAL \& METRIC Series 142P

142P 8xD

FRACTIONAL \& METRIC SERIES

| - High-performance point |
| :--- | :--- |
| design stabilizes on |
| entry for exceptional |
| hole size and cylindricity |
| while also allowing for |
| low thrust force and |
| extended tool life |
| - Internal coolant hole |
| improves coolant flow to |
| extend tool life and aid |
| in chip evacuation |
| - 4-margin design |
| improves hole |
| straightness and |
| roundness while |
| providing improved |
| stability for difficult |
| applications like cross |
| holes and when exiting |
| on angle |
| - Proprietary Ti-NAMITE $\oplus-X$ |
| coating and industry |
| leading carbide substrate |
| provides exceptional |
| wear resistance and |
| toughness for demanding |
| applications |
| - Recommended for |
| materials $\leq 50 H R c$ |
| (475 Bhn) |

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	overall LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{(\mathrm{TX})}{\text { Ti-NAMIT }{ }^{\circ}-\mathrm{X}}$
0.3622	$9,200 \mathrm{~mm}$		10,0	142,0	95,0	81,0	40,0	66668
0.3661	9,300 mm		10,0	142,0	95,0	81,0	40,0	66669
0.3680	9,347 mm	U	10,0	142,0	95,0	81,0	40,0	56492
0.3701	$9,400 \mathrm{~mm}$		10,0	142,0	95,0	81,0	40,0	66670
0.3740	9,500 mm		10,0	142,0	95,0	81,0	40,0	66671
0.3750	9,525 mm	3/8	10,0	142,0	95,0	81,0	40,0	56493
0.3780	9,600 mm		10,0	142,0	95,0	81,0	40,0	66672
0.3819	9,700 mm		10,0	142,0	95,0	80,0	40,0	66673
0.3858	$9,800 \mathrm{~mm}$		10,0	142,0	95,0	80,0	40,0	66674
0.3898	9,900 mm		10,0	142,0	95,0	80,0	40,0	66675
0.3906	9,921 mm	25/64	10,0	142,0	95,0	80,0	40,0	56494
0.3937	$10,000 \mathrm{~mm}$		10,0	142,0	95,0	80,0	40,0	66676
0.3976	10,100 mm		12,0	162,0	114,0	99,0	45,0	66677
0.4016	$10,200 \mathrm{~mm}$		12,0	162,0	114,0	99,0	45,0	66678
0.4055	10,300 mm		12,0	162,0	114,0	99,0	45,0	66679
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	162,0	114,0	99,0	45,0	56495
0.4095	$10,400 \mathrm{~mm}$		12,0	162,0	114,0	98,0	45,0	66680
0.4134	10,500 mm		12,0	162,0	114,0	98,0	45,0	66681
0.4173	10,600 mm		12,0	162,0	114,0	98,0	45,0	66682
0.4213	10,700 mm		12,0	162,0	114,0	98,0	45,0	66683
0.4219	10,716 mm	27/64	12,0	162,0	114,0	98,0	45,0	56496
0.4252	10,800 mm		12,0	162,0	114,0	98,0	45,0	66684
0.4291	$10,900 \mathrm{~mm}$		12,0	162,0	114,0	98,0	45,0	66685
0.4331	$11,000 \mathrm{~mm}$		12,0	162,0	114,0	97,0	45,0	66686
0.4370	$11,100 \mathrm{~mm}$		12,0	162,0	114,0	97,0	45,0	66687
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	162,0	114,0	97,0	45,0	56497
0.4409	$11,200 \mathrm{~mm}$		12,0	162,0	114,0	97,0	45,0	66688
0.4449	$11,300 \mathrm{~mm}$		12,0	162,0	114,0	97,0	45,0	66689
0.4488	$11,400 \mathrm{~mm}$		12,0	162,0	114,0	97,0	45,0	66690
0.4528	$11,500 \mathrm{~mm}$		12,0	162,0	114,0	97,0	45,0	66691
0.4567	$11,600 \mathrm{~mm}$		12,0	162,0	114,0	97,0	45,0	66692
0.4606	$11,700 \mathrm{~mm}$		12,0	162,0	114,0	96,0	45,0	66693
0.4646	$11,800 \mathrm{~mm}$		12,0	162,0	114,0	96,0	45,0	66694
0.4685	$11,900 \mathrm{~mm}$		12,0	162,0	114,0	96,0	45,0	66695
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	162,0	114,0	96,0	45,0	56498
0.4724	$12,000 \mathrm{~mm}$		12,0	162,0	114,0	96,0	45,0	66696
0.4844	$12,304 \mathrm{~mm}$	31/64	14,0	178,0	133,0	114,0	45,0	56499
0.4921	$12,500 \mathrm{~mm}$		14,0	178,0	133,0	114,0	45,0	66697
							continued	on next page

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \\ & \text { LCF } \end{aligned}$	USABLE LENGT LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{\text { (TX) }}{\text { Ti-NAMITE }-\mathrm{X}}$
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	178,0	133,0	114,0	45,0	56500
0.5039	$12,800 \mathrm{~mm}$		14,0	178,0	133,0	114,0	45,0	66698
0.5118	$13,000 \mathrm{~mm}$		14,0	178,0	133,0	114,0	45,0	66699
0.5156	$13,096 \mathrm{~mm}$	33/64	14,0	178,0	133,0	113,0	45,0	56501
0.5315	$13,500 \mathrm{~mm}$		14,0	178,0	133,0	113,0	45,0	66700
0.5433	$13,800 \mathrm{~mm}$		14,0	178,0	133,0	113,0	45,0	66701
0.5512	$14,000 \mathrm{~mm}$		14,0	178,0	133,0	113,0	45,0	66702
0.5625	14,288 mm	9/16	16,0	203,0	152,0	130,0	48,0	56502
0.5709	$14,500 \mathrm{~mm}$		16,0	203,0	152,0	130,0	48,0	66703
0.5781	$14,684 \mathrm{~mm}$	37/64	16,0	203,0	152,0	130,0	48,0	56503
0.5827	$14,800 \mathrm{~mm}$		16,0	203,0	152,0	130,0	48,0	66704
0.5906	$15,000 \mathrm{~mm}$		16,0	203,0	152,0	129,0	48,0	66705
0.6102	$15,500 \mathrm{~mm}$		16,0	203,0	152,0	129,0	48,0	66706
0.6221	$15,800 \mathrm{~mm}$		16,0	203,0	152,0	128,0	48,0	66707
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	203,0	152,0	128,0	48,0	56504
0.6299	$16,000 \mathrm{~mm}$		16,0	203,0	152,0	128,0	48,0	66708
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	222,0	171,0	145,0	48,0	56505
0.6875	17,463 mm	11/16	18,0	222,0	171,0	145,0	48,0	56506
0.7500	19,050 mm	3/4	20,0	243,0	190,0	161,0	50,0	56507

FRACTIONAL \& METRIC
$\underset{\text { Common }}{\square}$

Internal
Point Angle

New Expanded Tools

- High-performance point design stabilizes on entry for exceptional hole size and cylindricity while also allowing for low thrust force and extended tool life
- Internal coolant hole improves coolant flow to extend tool life and aid in chip evacuation
- 4-margin design improves hole straightness and roundness while providing improved stability for difficult applications like cross holes and when exiting on angle
- Proprietary Ti-NAMITE ${ }^{\oplus}-\mathrm{X}$ coating and industry leading carbide substrate provides exceptional wear resistance and toughness for demanding applications
- Recommended for materials $\leq 50 \mathrm{HRc}$ (475 Bhn)

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{(T X)}{\text { Ti-NAMITE }}$
0.1181	$3,000 \mathrm{~mm}$		6,0	87,0	49,0	44,0	36,0	66709
0.1220	$3,100 \mathrm{~mm}$		6,0	87,0	49,0	44,0	36,0	66710
0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	87,0	49,0	44,0	36,0	56508
0.1260	$3,200 \mathrm{~mm}$		6,0	87,0	49,0	44,0	36,0	66711
0.1299	$3,300 \mathrm{~mm}$		6,0	87,0	49,0	44,0	36,0	66712
0.1339	$3,400 \mathrm{~mm}$		6,0	87,0	49,0	44,0	36,0	66713
0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	87,0	49,0	44,0	36,0	56509
0.1378	$3,500 \mathrm{~mm}$		6,0	87,0	49,0	44,0	36,0	66714
0.1406	$3,571 \mathrm{~mm}$	9/64	6,0	87,0	49,0	43,0	36,0	56510
0.1417	$3,600 \mathrm{~mm}$		6,0	87,0	49,0	43,0	36,0	66715
0.1457	$3,700 \mathrm{~mm}$		6,0	87,0	49,0	43,0	36,0	66716
0.1496	$3,800 \mathrm{~mm}$		6,0	100,0	62,0	56,0	36,0	66717
0.1535	$3,900 \mathrm{~mm}$		6,0	100,0	62,0	56,0	36,0	66718
0.1562	$3,967 \mathrm{~mm}$	5/32	6,0	100,0	62,0	56,0	36,0	56511
0.1575	$4,000 \mathrm{~mm}$		6,0	100,0	62,0	56,0	36,0	66719
0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	100,0	62,0	56,0	36,0	56512
0.1614	$4,100 \mathrm{~mm}$		6,0	100,0	62,0	56,0	36,0	66720
0.1654	$4,200 \mathrm{~mm}$		6,0	100,0	62,0	55,0	36,0	66721
0.1693	$4,300 \mathrm{~mm}$		6,0	100,0	62,0	55,0	36,0	66722
0.1719	4,366 mm	11/64	6,0	100,0	62,0	55,0	36,0	56513
0.1732	$4,400 \mathrm{~mm}$		6,0	100,0	62,0	55,0	36,0	66723
0.1772	$4,500 \mathrm{~mm}$		6,0	100,0	62,0	55,0	36,0	66724
0.1811	$4,600 \mathrm{~mm}$		6,0	100,0	62,0	55,0	36,0	66725
0.1850	4,699 mm	\#13	6,0	100,0	62,0	55,0	36,0	66726
0.1875	4,763 mm	3/16	6,0	119,0	81,0	74,0	36,0	56514
0.1890	$4,801 \mathrm{~mm}$	\#12	6,0	119,0	81,0	74,0	36,0	66727
0.1929	$4,900 \mathrm{~mm}$		6,0	119,0	81,0	74,0	36,0	66728
0.1969	$5,000 \mathrm{~mm}$		6,0	119,0	81,0	73,0	36,0	66729
0.2008	$5,100 \mathrm{~mm}$		6,0	119,0	81,0	73,0	36,0	66730
0.2031	$5,159 \mathrm{~mm}$	13/64	6,0	119,0	81,0	73,0	36,0	56515
0.2047	$5,200 \mathrm{~mm}$		6,0	119,0	81,0	73,0	36,0	66731
0.2087	5,300 mm		6,0	119,0	81,0	73,0	36,0	66732
0.2126	$5,400 \mathrm{~mm}$		6,0	119,0	81,0	73,0	36,0	66733
0.2165	$5,500 \mathrm{~mm}$		6,0	119,0	81,0	73,0	36,0	66734
0.2188	$5,558 \mathrm{~mm}$	7/32	6,0	119,0	81,0	73,0	36,0	56516
0.2205	$5,600 \mathrm{~mm}$		6,0	119,0	81,0	73,0	36,0	66735
0.2244	5,700 mm		6,0	119,0	81,0	72,0	36,0	66736
0.2283	5,800 mm		6,0	119,0	81,0	72,0	36,0	66737
								on next page

TOLERANCES (inch) $\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON = h_{6}
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{gathered} \text { SHANK } \\ \text { DIAMETER } \\ \text { DCON } \end{gathered}$	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{\text { (TX) }}{\text { Ti-NAMITE® }-X}$
0.2323	5,900 mm		6,0	119,0	81,0	72,0	36,0	66738
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	119,0	81,0	72,0	36,0	56517
0.2362	6,000 mm		6,0	119,0	81,0	72,0	36,0	66739
0.2402	6,100 mm		8,0	146,0	108,0	99,0	36,0	66740
0.2441	6,200 mm		8,0	146,0	108,0	99,0	36,0	66741
0.2480	6,300 mm		8,0	146,0	108,0	99,0	36,0	66742
0.2500	6,350 mm	1/4 E \#0	8,0	146,0	108,0	98,0	36,0	56518
0.2520	6,400 mm		8,0	146,0	108,0	98,0	36,0	66743
0.2559	6,500 mm		8,0	146,0	108,0	98,0	36,0	66744
0.2570	6,528 mm	F	8,0	146,0	108,0	98,0	36,0	56519
0.2598	6,600 mm		8,0	146,0	108,0	98,0	36,0	66745
0.2638	6,700 mm		8,0	146,0	108,0	98,0	36,0	66746
0.2656	6,746 mm	17/64	8,0	146,0	108,0	98,0	36,0	56520
0.2677	6,800 mm		8,0	146,0	108,0	98,0	36,0	66747
0.2717	6,900 mm		8,0	146,0	108,0	98,0	36,0	66748
0.2756	7,000 mm		8,0	146,0	108,0	97,0	36,0	66749
0.2795	7,100 mm		8,0	146,0	108,0	97,0	36,0	66750
0.2812	7,142 mm	9/32	8,0	146,0	108,0	97,0	36,0	56521
0.2835	7,200 mm		8,0	146,0	108,0	97,0	36,0	66751
0.2874	7,300 mm		8,0	146,0	108,0	97,0	36,0	66752
0.2913	7,400 mm		8,0	146,0	108,0	97,0	36,0	66753
0.2953	7,500 mm		8,0	146,0	108,0	97,0	36,0	66754
0.2969	7,541 mm	19/64	8,0	146,0	108,0	97,0	36,0	56522
0.2992	7,600 mm		8,0	146,0	108,0	97,0	36,0	66755
0.3031	7,700 mm		8,0	146,0	108,0	96,0	36,0	66756
0.3071	7,800 mm		8,0	146,0	108,0	96,0	36,0	66757
0.3110	7,900 mm		8,0	146,0	108,0	96,0	36,0	66758
0.3125	7,938 mm	5/16	8,0	146,0	108,0	96,0	36,0	56523
0.3150	8,000 mm		8,0	146,0	108,0	96,0	36,0	66759
0.3189	8,100 mm		10,0	182,0	135,0	123,0	40,0	66760
0.3228	8,200 mm		10,0	182,0	135,0	123,0	40,0	66761
0.3268	8,300 mm		10,0	182,0	135,0	123,0	40,0	66762
0.3281	8,334 mm	21/64	10,0	182,0	135,0	123,0	40,0	56524
0.3307	8,400 mm		10,0	182,0	135,0	122,0	40,0	66763
0.3320	$8,433 \mathrm{~mm}$	0	10,0	182,0	135,0	122,0	40,0	56525
0.3346	8,500 mm		10,0	182,0	135,0	122,0	40,0	66764
0.3386	8,600 mm		10,0	182,0	135,0	122,0	40,0	66765
0.3425	8,700 mm		10,0	182,0	135,0	122,0	40,0	66766
0.3438	8,733 mm	11/32	10,0	182,0	135,0	122,0	40,0	56526
0.3465	8,800 mm		10,0	182,0	135,0	122,0	40,0	66767
0.3504	$8,900 \mathrm{~mm}$		10,0	182,0	135,0	122,0	40,0	66768
0.3543	9,000 mm		10,0	182,0	135,0	122,0	40,0	66769
0.3583	9,100 mm		10,0	182,0	135,0	121,0	40,0	66770
0.3594	9,129 mm	23/64	10,0	182,0	135,0	121,0	40,0	56527
							continued	on next page

FRACTIONAL \& METRIC
$\underset{\text { Common }}{\infty}$

Internal
Point Angle

New Expanded Tools

- High-performance point design stabilizes on entry for exceptional hole size and cylindricity while also allowing for low thrust force and extended tool life
- Internal coolant hole improves coolant flow to extend tool life and aid in chip evacuation
- 4-margin design improves hole straightness and roundness while providing improved stability for difficult applications like cross holes and when exiting on angle
- Proprietary Ti-NAMITE ${ }^{\oplus}-\mathrm{X}$ coating and industry leading carbide substrate provides exceptional wear resistance and toughness for demanding applications
- Recommended for materials $\leq 50 \mathrm{HRc}$ (475 Bhn)

inch \& mm								EDP NO.
$\begin{gathered} \text { DECIMAL } \\ \text { DC } \end{gathered}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{(T X)}{\text { Ti-NAMITE }-X ~}$
0.3622	9,200 mm		10,0	182,0	135,0	121,0	40,0	66771
0.3661	9,300 mm		10,0	182,0	135,0	121,0	40,0	66772
0.3680	9,347 mm	U	10,0	182,0	135,0	121,0	40,0	56528
0.3701	9,400 mm		10,0	182,0	135,0	121,0	40,0	66773
0.3740	9,500 mm		10,0	182,0	135,0	121,0	40,0	66774
0.3750	9,525 mm	3/8	10,0	182,0	135,0	121,0	40,0	56529
0.3780	9,600 mm		10,0	182,0	135,0	121,0	40,0	66775
0.3819	9,700 mm		10,0	182,0	135,0	120,0	40,0	66776
0.3858	9,800 mm		10,0	182,0	135,0	120,0	40,0	66777
0.3898	9,900 mm		10,0	182,0	135,0	120,0	40,0	66778
0.3906	9,921 mm	25/64	10,0	182,0	135,0	120,0	40,0	56530
0.3937	10,000 mm		10,0	182,0	135,0	120,0	40,0	66779
0.3976	10,100 mm		12,0	210,0	162,0	147,0	45,0	66780
0.4016	10,200 mm		12,0	210,0	162,0	147,0	45,0	66781
0.4055	10,300 mm		12,0	210,0	162,0	147,0	45,0	66782
0.4062	10,317 mm	13/32	12,0	210,0	162,0	147,0	45,0	56531
0.4095	10,400 mm		12,0	210,0	162,0	146,0	45,0	66783
0.4134	$10,500 \mathrm{~mm}$		12,0	210,0	162,0	146,0	45,0	66784
0.4173	$10,600 \mathrm{~mm}$		12,0	210,0	162,0	146,0	45,0	66785
0.4213	10,700 mm		12,0	210,0	162,0	146,0	45,0	66786
0.4219	10,716 mm	27/64	12,0	210,0	162,0	146,0	45,0	56532
0.4252	10,800 mm		12,0	210,0	162,0	146,0	45,0	66787
0.4291	10,900 mm		12,0	210,0	162,0	146,0	45,0	66788
0.4331	$11,000 \mathrm{~mm}$		12,0	210,0	162,0	145,0	45,0	66789
0.4370	$11,100 \mathrm{~mm}$		12,0	210,0	162,0	145,0	45,0	66790
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	210,0	162,0	145,0	45,0	56533
0.4409	11,200 mm		12,0	210,0	162,0	145,0	45,0	66791
0.4449	$11,300 \mathrm{~mm}$		12,0	210,0	162,0	145,0	45,0	66792
0.4488	$11,400 \mathrm{~mm}$		12,0	210,0	162,0	145,0	45,0	66793
0.4528	$11,500 \mathrm{~mm}$		12,0	210,0	162,0	145,0	45,0	66794
0.4567	$11,600 \mathrm{~mm}$		12,0	210,0	162,0	145,0	45,0	66795
0.4606	11,700 mm		12,0	210,0	162,0	144,0	45,0	66796
0.4646	11,800 mm		12,0	210,0	162,0	144,0	45,0	66797
0.4685	11,900 mm		12,0	210,0	162,0	144,0	45,0	66798
0.4688	11,908 mm	15/32	12,0	210,0	162,0	144,0	45,0	56534
0.4724	$12,000 \mathrm{~mm}$		12,0	210,0	162,0	144,0	45,0	66799
0.4844	12,304 mm	31/64	14,0	234,0	189,0	171,0	45,0	56535
0.4921	12,500 mm		14,0	234,0	189,0	170,0	45,0	66800
							continue	on next page

TOLERANCES (inch) $\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{gathered} \text { SHANK } \\ \text { DIAMETER } \\ \text { DCON } \end{gathered}$	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{\text { (TX) }}{\text { Ti-NAMITE }{ }^{0}-\mathrm{X}}$
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	234,0	189,0	170,0	45,0	56536
0.5039	$12,800 \mathrm{~mm}$		14,0	234,0	189,0	170,0	45,0	66801
0.5118	$13,000 \mathrm{~mm}$		14,0	234,0	189,0	170,0	45,0	66802
0.5156	13,096 mm	33/64	14,0	234,0	189,0	169,0	45,0	56537
0.5315	$13,500 \mathrm{~mm}$		14,0	234,0	189,0	169,0	45,0	66803
0.5433	$13,800 \mathrm{~mm}$		14,0	234,0	189,0	168,0	45,0	66804
0.5512	$14,000 \mathrm{~mm}$		14,0	234,0	189,0	168,0	45,0	66805
0.5625	14,288 mm	9/16	16,0	267,0	216,0	195,0	48,0	56538
0.5709	$14,500 \mathrm{~mm}$		16,0	267,0	216,0	194,0	48,0	66806
0.5781	14,684 mm	37/64	16,0	267,0	216,0	194,0	48,0	56539
0.5827	$14,800 \mathrm{~mm}$		16,0	267,0	216,0	194,0	48,0	66807
0.5906	15,000 mm		16,0	267,0	216,0	193,0	48,0	66808
0.6102	$15,500 \mathrm{~mm}$		16,0	267,0	216,0	193,0	48,0	66809
0.6221	15,800 mm		16,0	267,0	216,0	192,0	48,0	66810
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	267,0	216,0	192,0	48,0	56540
0.6299	16,000 mm		16,0	267,0	216,0	192,0	48,0	66811
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	292,0	241,0	216,0	48,0	56541
0.6875	$17,463 \mathrm{~mm}$	11/16	18,0	292,0	241,0	215,0	48,0	56542
0.7500	19,050 mm	3/4	20,0	319,0	266,0	238,0	50,0	56543

FRACTIONAL

	Series 142P Fractional	Hardness	$\begin{gathered} \mathrm{Vc} \\ (\mathrm{sfm}) \end{gathered}$		DC*in						
					1/8	3/16	1/4	3/8	1/2	5/8	3/4
	CARBON STEELS 1018, 1040, 1080, 1090, 10L50, 1140, 1212, 12L15, 1525, 1536	$\begin{gathered} \leq 175 \mathrm{Bhn} \\ \text { or } \\ \leq 7 \mathrm{HRc} \end{gathered}$	425	RPM	12988	8659	6494	4329	3247	2598	2165
			(340-510)	Fr	0.0043	0.0065	0.0086	0.0129	0.0172	0.0216	0.0259
				Feed (ipm)	56.0	56.0	56.0	56.0	56.0	56.0	56.0
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	380	RPM	11613	7742	5806	3871	2903	2323	1935
			(304-456)	Fr	0.0039	0.0058	0.0078	0.0116	0.0155	0.0194	0.0233
				Feed (ipm)	45.0	45.0	45.0	45.0	45.0	45.0	45.0
		$\begin{gathered} \leq 425 \mathrm{Bhn} \\ \text { or } \\ \leq 45 \mathrm{HRc} \end{gathered}$	220	RPM	6723	4482	3362	2241	1681	1345	1121
			(176-264)	Fr	0.0033	0.0049	0.0065	0.0098	0.0131	0.0164	0.0196
				Feed (ipm)	22.0	22.0	22.0	22.0	22.0	22.0	22.0
	ALLOY STEELS$4140,4150,4320,5120$$5150,8330,8620,50100$	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	330	RPM	10085	6723	5042	3362	2521	2017	1681
			(264-396)	Fr	0.0033	0.0049	0.0065	0.0098	0.0131	0.0164	0.0196
				Feed (ipm)	33.0	33.0	33.0	33.0	33.0	33.0	33.0
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	200	RPM	6112	4075	3056	2037	1528	1222	1019
			(160-240)	Fr	0.0028	0.0042	0.0056	0.0083	0.0111	0.0139	0.0167
				Feed (ipm)	17.0	17.0	17.0	17.0	17.0	17.0	17.0
		$\begin{aligned} & \leq 425 \mathrm{Bhn} \\ & \text { or } \\ & \leq 45 \mathrm{HRc} \end{aligned}$	140	RPM	4278	2852	2139	1426	1070	856	713
			(112-168)	Fr	0.0020	0.0030	0.0040	0.0060	0.0079	0.0099	0.0119
				Feed (ipm)	8.5	8.5	8.5	8.5	8.5	8.5	8.5
	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{gathered} \leq 200 \mathrm{Bhn} \\ \text { or } \\ \leq 13 \mathrm{HRc} \end{gathered}$	145	RPM	4431	2954	2216	1477	1108	886	739
			(116-174)	Fr	0.0028	0.0042	0.0056	0.0085	0.0113	0.0141	0.0169
				Feed (ipm)	12.5	12.5	12.5	12.5	12.5	12.5	12.5
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	95	RPM	2903	1935	1452	968	726	581	484
			(76-114)	Fr	0.0013	0.0020	0.0027	0.0040	0.0054	0.0067	0.0081
				Feed (ipm)	3.9	3.9	3.9	3.9	3.9	3.9	3.9
	STAINLESS STEELS (FREE MACHINING) 303, 416, 420F, 430F, 440F	$\begin{gathered} \leq 185 \text { Bhn } \\ \text { or } \\ \leq 9 \mathrm{HRc} \end{gathered}$	305	RPM	9321	6214	4660	3107	2330	1864	1553
			(244-366)	Fr	0.0026	0.0039	0.0051	0.0077	0.0103	0.0129	0.0154
				Feed (ipm)	24.0	24.0	24.0	24.0	24.0	24.0	24.0
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	195	RPM	5959	3973	2980	1986	1490	1192	993
			(156-234)	Fr	0.0020	0.0030	0.0040	0.0060	0.0081	0.0101	0.0121
				Feed (ipm)	12.0	12.0	12.0	12.0	12.0	12.0	12.0
	STAINLESS STEELS (DIFFICULT) 304, 316, 321, 13-8 PH, 15-5PH, 17-4 PH, Custom 450	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	150	RPM	4584	3056	2292	1528	1146	917	764
			(120-180)	Fr	0.0020	0.0030	0.0040	0.0060	0.0079	0.0099	0.0119
				Feed (ipm)	9.1	9.1	9.1	9.1	9.1	9.1	9.1
		$\begin{aligned} & \leq 375 \mathrm{Bhn} \\ & \text { or } \\ & \leq 40 \mathrm{HRc} \end{aligned}$	110	RPM	3362	2241	1681	1121	840	672	560
			(88-132)	Fr	0.0018	0.0027	0.0036	0.0054	0.0071	0.0089	0.0107
				Feed (ipm)	6.0	6.0	6.0	6.0	6.0	6.0	6.0
	CAST IRONS Gray, Malleable, Ductile	$\begin{gathered} \leq 220 \mathrm{Bhn} \\ \text { or } \\ \leq 19 \mathrm{HRc} \end{gathered}$	360	RPM	11002	7334	5501	3667	2750	2200	1834
			(288-432)	Fr	0.0045	0.0068	0.0091	0.0136	0.0182	0.0227	0.0273
				Feed (ipm)	50.0	50.0	50.0	50.0	50.0	50.0	50.0
		$\begin{gathered} \leq 260 \mathrm{Bhn} \\ \text { or } \\ \leq 26 \mathrm{HRc} \end{gathered}$	335	RPM	10238	6825	5119	3413	2559	2048	1706
			(268-402)	Fr	0.0045	0.0068	0.0091	0.0136	0.0182	0.0227	0.0273
				Feed (ipm)	46.5	46.5	46.5	46.5	46.5	46.5	46.5

Series 142P Fractional		Hardness	$\begin{gathered} \text { Vc } \\ (\mathrm{sfm}) \end{gathered}$		DC - in							
				1/8	3/16	1/4	3/8	1/2	5/8	3/4		
ALUMINUM ALLOYS 2017, 2024, 356, 6061, 7075				770	RPM	23531	15687	11766	7844	5883	4706	3922
		(616-924)		Fr	0.0049	0.0073	0.0098	0.0147	0.0195	0.0244	0.0293	
		Feed (ipm)		115.0	115.0	115.0	115.0	115.0	115.0	115.0		
		$\begin{gathered} \leq 150 \text { Bhn } \\ \text { or } \\ \leq 8 \mathrm{HRb} \end{gathered}$	660	RPM	20170	13446	10085	6723	5042	4034	3362	
		(528-792)	Fr	0.0050	0.0074	0.0099	0.0149	0.0198	0.0248	0.0297		
		Feed (ipm)	100.0	100.0	100.0	100.0	100.0	100.0	100.0			
	COPPER ALLOYS Alum Bronze, C110, Muntz Brass		$\begin{aligned} & \leq 140 \mathrm{Bhn} \\ & \quad \text { or } \\ & \leq 3 \mathrm{HRc} \end{aligned}$	550	RPM	16808	11205	8404	5603	4202	3362	2801
		(440-660)		Fr	0.0020	0.0030	0.0040	0.0060	0.0080	0.0100	0.0120	
				Feed (ipm)	33.5	33.5	33.5	33.5	33.5	33.5	33.5	
		$\begin{gathered} \leq 200 \mathrm{Bhn} \\ \text { or } \\ \leq 23 \mathrm{HRc} \end{gathered}$	440	RPM	13446	8964	6723	4482	3362	2689	2241	
			(352-528)	Fr	0.0020	0.0030	0.0040	0.0060	0.0080	0.0100	0.0120	
				Feed (ipm)	27.0	27.0	27.0	27.0	27.0	27.0	27.0	
	HIGH TEMP ALLOYS (NICKEL, COBALT, IRON BASE) Inconel 601, 617, 625, Incoloy, Monel 400, Rene, Waspaloy	$\begin{aligned} & \leq 300 \text { Bhn } \\ & \text { or } \\ & \leq 32 \mathrm{HRc} \end{aligned}$	95	RPM	2903	1935	1452	968	726	581	484	
			(76-114)	Fr	0.0008	0.0012	0.0016	0.0024	0.0032	0.0040	0.0048	
				Feed (ipm)	2.3	2.3	2.3	2.3	2.3	2.3	2.3	
		$\begin{gathered} \leq 400 \text { Bhn } \\ \text { or } \\ \leq 43 \mathrm{HRc} \end{gathered}$	50	RPM	1528	1019	764	509	382	306	255	
			(40-60)	Fr	0.0007	0.0010	0.0013	0.0020	0.0026	0.0033	0.0039	
				Feed (ipm)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6AI2Sn4Zr2Mo, Ti4AI4Mo2Sn0.5Si, Ti-6AI4V	$\begin{gathered} \leq 275 \text { Bhn } \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	215	RPM	6570	4380	3285	2190	1643	1314	1095	
			(172-258)	Fr	0.0018	0.0026	0.0035	0.0053	0.0070	0.0088	0.0105	
				Feed (ipm)	11.5	11.5	11.5	11.5	11.5	11.5	11.5	
		$\begin{aligned} & \leq 350 \mathrm{Bhn} \\ & \text { or } \\ & \leq 38 \mathrm{HRc} \end{aligned}$	160	RPM	4890	3260	2445	1630	1222	978	815	
			(128-192)	Fr	0.0016	0.0024	0.0032	0.0048	0.0064	0.0080	0.0096	
				Feed (ipm)	7.8	7.8	7.8	7.8	7.8	7.8	7.8	
		$\begin{aligned} & \leq 440 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	85	RPM	2598	1732	1299	866	649	520	433	
			(68-102)	Fr	0.0012	0.0018	0.0024	0.0036	0.0048	0.0060	0.0072	
				Feed (ipm)	3.1	3.1	3.1	3.1	3.1	3.1	3.1	
H	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{aligned} & \leq 475 \mathrm{Bhn} \\ & \quad \text { or } \\ & \leq 50 \mathrm{HRc} \end{aligned}$	85	RPM	2598	1732	1299	866	649	520	433	
			(68-102)	Fr	0.0008	0.0013	0.0017	0.0025	0.0034	0.0042	0.0051	
				Feed (ipm)	2.2	2.2	2.2	2.2	2.2	2.2	2.2	

Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
$\mathrm{rpm}=\mathrm{Vc} \times 3.82$ / DC
ipm $=\operatorname{Fr} \times$ RPM
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

	Series							DC•			
	Metric	Hardness	(m/min)		3	6	8	10	12	14	16
		≤ 175 Bhn	130	RPM	13733	6867	5150	4120	3433	2943	2575
		or		Fr	0.104	0.207	0.276	0.345	0.414	0.483	0.552
			(104-155)	Feed (mm/min)	1422	1422	1422	1422	1422	1422	1422
	CARBON STEELS	≤ 275 Bhn	116	RPM	12279	6140	4605	3684	3070	2631	2302
	1018, 1040, 1080, 1090, 10L50,	or	(93-139)	Fr	0.093	0.186	0.248	0.310	0.372	0.434	0.496
		$\leq 28 \mathrm{HRC}$	(ЈЗ-ィง)	Feed (mm/min)	1143	1143	1143	1143	1143	1143	1143
		≤ 425 B	67	RPM	7109	3555	2666	2133	1777	1523	1333
		or		Fr	0.079	0.157	0.210	0.262	0.314	0.367	0.419
		≤ 45 HRC	(54-80)	Feed (mm/min)	559	559	559	559	559	559	559
		≤ 275 Bhn	101	RPM	10664	5332	3999	3199	2666	2285	1999
			(80-121)	Fr	0.079	0.157	0.210	0.262	0.314	0.367	0.419
				Feed (mm/min)	838	838	838	838	838	838	838
	ALLOY STEEIS	≤ 375 Bhn	61	RPM	6463	3231	2424	1939	1616	1385	1212
	4140, 4150, 4320, 5120,	or ≤ 40	(49-73)	Fr	0.067	0.134	0.178	0.223	0.267	0.312	0.356
	, 8630,86L2,50100	$\leq 40 \mathrm{HRC}$		Feed (mm/min)	432	432	432	432	432	432	432
		≤ 425 Bhn	43	RPM	4524	2262	1696	1357	1131	969	848
		or	(34-51)	Fr	0.048	0.095	0.127	0.159	0.191	0.223	0.255
			(34-51)	Feed (mm/min)	216	216	216	216	216	216	216
			44	RPM	4686	2343	1757	1406	1171	1004	879
		or		Fr	0.068	0.136	0.181	0.226	0.271	0.316	0.361
	TOOL STEELS			Feed (mm/min)	318	318	318	318	318	318	318
	P20, S7, T15, W2		29	RPM	3070	1535	1151	921	767	658	576
		or ≤ 40	(23-35)	Fr	0.032	0.065	0.086	0.108	0.129	0.151	0.172
		$\leq 40 \mathrm{HRc}$		Feed (mm/min)	99	99	99	99	99	99	99
			93	9856	9856	4928	3696	2957	2464	2112	1848
		or	(74-112)	0.062	0.062	0.124	0.165	0.206	0.247	0.289	0.330
	STAINLESS STEELS		(74-112)	610	610	610	610	610	610	610	610
	303, 416, 420F, 430F, 440F		59	6301	6301	3151	2363	1890	1575	1350	1181
		or		0.048	0.048	0.097	0.129	0.161	0.193	0.226	0.258
		≤ 28 HRC	(48-71)	305	305	305	305	305	305	305	305
			46	4847	4847	2424	1818	1454	1212	1039	909
		or		0.048	0.048	0.095	0.127	0.159	0.191	0.223	0.254
	STAINLESS STEELS (DIFFICULT)	≤ 28 HRC	(37-55)	231	231	231	231	231	231	231	231
	304, 316, 321, 13-8 PH, 15-5PH, 17-4 PH, Custom 450	≤ 375 Bhn	34	3555	3555	1777	1333	1066	889	762	666
		or		0.043	0.043	0.086	0.114	0.143	0.171	0.200	0.229
			(27-40)	152	152	152	152	152	152	152	152
K	CAST IRONS Gray, Malleable, Ductile	$\begin{gathered} \leq 220 \mathrm{Bhn} \\ \text { or } \\ \leq 19 \mathrm{HRc} \end{gathered}$	110	RPM	11633	5816	4362	3490	2908	2493	2181
			(88-132)	Fr	0.109	0.218	0.291	0.364	0.437	0.509	0.582
				Feed (mm/min)	1270	1270	1270	1270	1270	1270	1270
		$\begin{gathered} \leq 260 \mathrm{Bhn} \\ \text { or } \\ \leq 26 \mathrm{HRc} \end{gathered}$	102	RPM	10825	5413	4059	3248	2706	2320	2030
			(82-123)	Fr	0.109	0.218	0.291	0.364	0.436	0.509	0.582
				Feed (mm/min)	1181	1181	1181	1181	1181	1181	1181

$\begin{aligned} & \text { Series } \\ & \text { 142P } \\ & \text { Metric } \end{aligned}$		Hardness	$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{min}) \end{gathered}$		DC•mm							
				3	6	8	10	12	14	16		
ALUMINUM ALLOYS 2017, 2024, 356, 6061, 7075			$\begin{aligned} & \leq 80 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRb} \end{aligned}$	235	RPM	24882	12441	9331	7465	6220	5332	4665
		(188-282)		Fr	0.117	0.235	0.313	0.391	0.470	0.548	0.626	
		Feed (mm/min)		2921	2921	2921	2921	2921	2921	2921		
		$\begin{aligned} & \leq 150 \mathrm{Bhn} \\ & \text { or } \\ & \leq 88 \mathrm{HRb} \end{aligned}$	201	RPM	21327	10664	7998	6398	5332	4570	3999	
		(161-241)	Fr	0.119	0.238	0.318	0.397	0.476	0.556	0.635		
		Feed (mm/min)	2540	2540	2540	2540	2540	2540	2540			
	Copper Alloys Alum Bronze, C110, Muntz Brass		$\begin{gathered} \leq 140 \text { Bhn } \\ \text { or } \\ \leq 3 \mathrm{HRc} \end{gathered}$	168	RPM	17773	8886	6665	5332	4443	3808	3332
		(134-201)		Fr	0.048	0.096	0.128	0.160	0.192	0.223	0.255	
				Feed (mm/min)	851	851	851	851	851	851	851	
		$\begin{aligned} & \leq 200 \mathrm{Bhn} \\ & \text { or } \\ & \leq 23 \mathrm{HRc} \end{aligned}$	134	RPM	14218	7109	5332	4265	3555	3047	2666	
			(107-161)	Fr	0.048	0.096	0.129	0.161	0.193	0.225	0.257	
				Feed (mm/min)	686	686	686	686	686	686	686	
	HIGH TEMP ALLOYS (Nickel , Cobalt, Iron Base) Inconel 601, 617, 625, Incoloy, Monel 400, Rene, Waspaloy	$\begin{aligned} & \leq 300 \text { Bhn } \\ & \text { or } \\ & \leq 32 \mathrm{HRc} \end{aligned}$	29	RPM	3070	1535	1151	921	767	658	576	
			(23-35)	Fr	0.019	0.038	0.051	0.063	0.076	0.089	0.101	
				Feed (mm/min)	58	58	58	58	58	58	58	
		≤ 400 Bhn	15	RPM	1616	808	606	485	404	346	303	
		or	(12-18)	Fr	0.016	0.031	0.042	0.052	0.063	0.073	0.084	
		≤ 43 HRc	(12-18)	Feed (mm/min)	25	25	25	25	25	25	25	
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6AI2Sn4Zr2Mo, Ti4AI4Mo2Sn0.5Si, Ti-6AI4V	$\begin{aligned} & \leq 275 \mathrm{Bhn} \\ & \quad \text { or } \\ & \leq 28 \mathrm{HRc} \end{aligned}$	66	RPM	6947	3474	2605	2084	1737	1489	1303	
			(52-79)	Fr	0.042	0.084	0.112	0.140	0.168	0.196	0.224	
				Feed (mm/min)	292	292	292	292	292	292	292	
		$\begin{aligned} & \leq 350 \mathrm{Bhn} \\ & \quad \text { or } \\ & \leq 38 \mathrm{HRc} \end{aligned}$	49	RPM	5170	2585	1939	1551	1293	1108	969	
			(39-59)	Fr	0.038	0.077	0.102	0.128	0.153	0.179	0.204	
				Feed (mm/min)	198	198	198	198	198	198	198	
		$\begin{aligned} & \leq 440 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	26	RPM	2747	1373	1030	824	687	589	515	
				Fr	0.029	0.057	0.076	0.096	0.115	0.134	0.153	
			(21-31)	Feed (mm/min)	79	79	79	79	79	79	79	
H	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{aligned} & \leq 475 \mathrm{Bhn} \\ & \text { or } \\ & \leq 50 \mathrm{HRc} \end{aligned}$	26	RPM	2747	1373	1030	824	687	589	515	
			$(21-31)$	Fr	0.020	0.041	0.054	0.068	0.081	0.095	0.109	
				Feed (mm/min)	56	56	56	56	56	56	56	

(Brinell) HRc (Rockwell C) HRb (Rockwell B)
rpm = (Vc x 1000) / (DC x 3.14)
$\mathrm{mm} / \mathrm{min}=\mathrm{Fr} \times \mathrm{RPM}$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard \circledR^{\circledR} for complete technical information (www.kyocera-sgstool.com)

high performance carbide drills

The key features designed into the Hi-PerCarb ${ }^{\circledR}$ Series 143M-S Drill allow the product to offer application benefits not only beyond that of standard carbide drills, but also other High Performance drills. Each feature of the Hi-PerCarb ${ }^{\circledR}$ Series 143M-S Drill was uniquely engineered as a solution towards addressing the issues commonly encountered during high production drilling.
(A)

ECCENTRIC 2-MARGIN DESIGN

- eccentric margin design reduces frictional heat and minimizes material adhesion to the margins without weakening the drill

SERIES 143M-S

- lower contact with the hole surface improves hole finish and quality, especially in gummy workpiece materials
(B) POINT exceptional hole size and cylindricity
- low thrust force reduces machine power requirement and extends tool life
- computer controlled edge hone protects against chip damage
(C) COOLANT THROUGH DESIGN
- the modified coolant hole exit increases flow for improved chip evacuation and extended tool life
(D) COATING AND CARBIDE exceptional wear and erosion resistance when drilling heat resisting alloys like Inconel, stainless steel, and titanium
- Series 143 M -S drills are manufactured from lab certified premium quality carbide

PERFORMANCE. PRECISION. PASSION. HI-PERCARB® ${ }^{\circledR}$ SERIES 143M-S DRILLS

PERFORMANCE.

TESTING PARAMETERS

FINISH COMPARISON (ALL MATERIALS)

- 3/8" Cutting Diameter
- 316 Stainless Steel (160 Bhn)
- 1630 rpm
- 9.8 ipm
- 1.875" Axial Depth
- TSC - Water Sol 8.9\%

TITANIUM TESTING PARAMETERS

- 3/8" Cutting Diameter
- Ti6AI4v Titanium (38 HRc)
- 1630 rpm
- 7.8 ipm
- 1.875" Axial Depth
- TSC - Water Sol 8.9\%

INCONEL TESTING PARAMETERS

- 3/8" Cutting Diameter
- 718 Inconel (43Hrc)
- 710 rpm
- 2.55 ipm
- 1.125" Axial Depth
- TSC - Water Sol 8.9

FINISH COMPARISON TEST RESULTS

The lower numerical value shown in the chart demonstrates the improved surface finish of holes produced by a drill with an eccentric margin like the HI-PERCARB ${ }^{\circledR} 143 \mathrm{M}-\mathrm{S}$ in all materials tested versus holes made by drills with a normal margin.

TOOL LIFE COMPARISON

TOOL LIFE COMPARISON TEST RESULTS

All tools were tested to failure, and under these conditions, the HI-PERCARB ${ }^{\circledR} 143 \mathrm{M}$-S produced the most holes versus the competition in both materials tested.

Excellent thermal and chemical resistance allows for dry cutting and improvements in performance of carbide. The coating has a high hardness giving great protection against abrasive wear and erosion.

```
Hardness (HV): 3700
Oxidation Temperature: 1100 % C - 2010}\mp@subsup{}{}{\circ}\textrm{F
Coefficient of Friction: 0.30
Thickness: 1-5 Microns (based on tool diameter)
```

FRACTIONAL \& METRIC
Series 143M-S
Common

143M-S 3xD

- Coolant through design improves coolant flow to extend tool life and aid in chip evacuation
- Eccentric 2-margin design reduces frictional heat and minimizes material adhesion to the margins without weakening the drill
- Computer controlled edge honing protects against chip damage
- High-performance point design stabilizes on contact for exceptional hole size and cylindricity allowing for low thrust force and extended tool life
- SGS Ti-NAMITE ${ }^{\oplus}$-A coating provides exceptional wear and erosion resistance when drilling heat resisting alloys like Inconel, Stainless Steel, and Titanium Alloys
- Recommended for materials $\leq 50 \mathrm{HRc}$ (475 Bhn)

inch \& mm								EDP N0.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	Ti-NAMITE ${ }^{\text {® }}$-A (AITiN)
0.1181	3,000 mm		6,0	62,0	20,0	15,0	36,0	69120
0.1220	3,100 mm		6,0	62,0	20,0	15,0	36,0	69121
0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	62,0	20,0	15,0	36,0	56800
0.1260	$3,200 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	69122
0.1299	$3,300 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	69123
0.1339	$3,400 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	69124
0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	62,0	20,0	15,0	36,0	56801
0.1378	3,500 mm		6,0	62,0	20,0	15,0	36,0	69125
0.1406	$3,571 \mathrm{~mm}$	9/64	6,0	62,0	20,0	15,0	36,0	56802
0.1417	3,600 mm		6,0	62,0	20,0	15,0	36,0	69126
0.1457	$3,700 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	69127
0.1496	3,800 mm		6,0	66,0	24,0	18,0	36,0	69128
0.1535	3,900 mm		6,0	66,0	24,0	18,0	36,0	69129
0.1562	3,967 mm	5/32	6,0	66,0	24,0	18,0	36,0	56803
0.1575	$4,000 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	69130
0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	66,0	24,0	18,0	36,0	56804
0.1614	$4,100 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	69131
0.1654	$4,200 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	69132
0.1693	$4,300 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	69133
0.1719	4,366 mm	11/64	6,0	66,0	24,0	17,0	36,0	56805
0.1732	$4,400 \mathrm{~mm}$		6,0	66,0	24,0	17,0	36,0	69134
0.1772	$4,500 \mathrm{~mm}$		6,0	66,0	24,0	17,0	36,0	69135
0.1811	$4,600 \mathrm{~mm}$		6,0	66,0	24,0	17,0	36,0	69136
0.1850	4,699 mm	\#13	6,0	66,0	24,0	17,0	36,0	69137
0.1875	4,763 mm	3/16	6,0	66,0	28,0	21,0	36,0	56806
0.1890	4,801 mm	\#12	6,0	66,0	28,0	21,0	36,0	69138
0.1929	4,900 mm		6,0	66,0	28,0	21,0	36,0	69139
0.1969	$5,000 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	69140
0.2008	$5,100 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	69141
0.2031	5,159 mm	13/64	6,0	66,0	28,0	20,0	36,0	56807
0.2047	$5,200 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	69142
0.2087	$5,300 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	69143
0.2126	$5,400 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	69144
0.2165	5,500 mm		6,0	66,0	28,0	20,0	36,0	69145
0.2188	5,558 mm	7/32	6,0	66,0	28,0	20,0	36,0	56808
0.2205	5,600 mm		6,0	66,0	28,0	20,0	36,0	69146
0.2244	$5,700 \mathrm{~mm}$		6,0	66,0	28,0	19,0	36,0	69147
0.2283	5,800 mm		6,0	66,0	28,0	19,0	36,0	69148
0.2323	5,900 mm		6,0	66,0	28,0	19,0	36,0	69149
0.2344	5,954 mm	15/64	6,0	66,0	28,0	19,0	36,0	56809
0.2362	$6,000 \mathrm{~mm}$		6,0	66,0	28,0	19,0	36,0	69150
0.2402	6,100 mm		8,0	79,0	34,0	25,0	36,0	69151
0.2441	$6,200 \mathrm{~mm}$		8,0	79,0	34,0	25,0	36,0	69152
0.2480	6,300 mm		8,0	79,0	34,0	25,0	36,0	69153
							continue	on next page

TOLERANCES (inch)
<. 1181 DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>. 1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=\mathrm{h}_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=\mathrm{h}_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS	
STAINLESS STEELS	
CAST IRON	
	HIGH TEMP ALLOYS

For patent
information visit www.ksptpatents.com

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF	$\underset{\substack{\text { USABLE } \\ \text { LENGTH }}}{\text { LU }}$	SHANK LENGTH LS	Ti-NAMITE ${ }^{\circ}$-A (AITiN)
0.2500	6,350 mm	1/4 E \#0	8,0	79,0	34,0	24,0	36,0	56810
0.2520	$6,400 \mathrm{~mm}$		8,0	79,0	34,0	24,0	36,0	69154
0.2559	6,500 mm		8,0	79,0	34,0	24,0	36,0	69155
0.2570	6,528 mm	F	8,0	79,0	34,0	24,0	36,0	56811
0.2598	6,600 mm		8,0	79,0	34,0	24,0	36,0	69156
0.2638	6,700 mm		8,0	79,0	34,0	24,0	36,0	69157
0.2656	6,746 mm	17/64	8,0	79,0	34,0	24,0	36,0	56812
0.2677	6,800 mm		8,0	79,0	34,0	24,0	36,0	69158
0.2717	6,900 mm		8,0	79,0	34,0	24,0	36,0	69159
0.2756	7,000 mm		8,0	79,0	34,0	24,0	36,0	69160
0.2795	7,100 mm		8,0	79,0	41,0	30,0	36,0	69161
0.2812	7,142 mm	9/32	8,0	79,0	41,0	30,0	36,0	56813
0.2835	7,200 mm		8,0	79,0	41,0	30,0	36,0	69162
0.2874	7,300 mm		8,0	79,0	41,0	30,0	36,0	69163
0.2913	7,400 mm		8,0	79,0	41,0	30,0	36,0	69164
0.2953	7,500 mm		8,0	79,0	41,0	30,0	36,0	69165
0.2969	7,541 mm	19/64	8,0	79,0	41,0	30,0	36,0	56814
0.2992	7,600 mm		8,0	79,0	41,0	30,0	36,0	69166
0.3031	7,700 mm		8,0	79,0	41,0	29,0	36,0	69167
0.3071	7,800 mm		8,0	79,0	41,0	29,0	36,0	69168
0.3110	7,900 mm		8,0	79,0	41,0	29,0	36,0	69169
0.3125	7,938 mm	5/16	8,0	79,0	41,0	29,0	36,0	56815
0.3150	8,000 mm		8,0	79,0	41,0	29,0	36,0	69170
0.3189	8,100 mm		10,0	89,0	47,0	35,0	40,0	69171
0.3228	8,200 mm		10,0	89,0	47,0	35,0	40,0	69172
0.3268	8,300 mm		10,0	89,0	47,0	35,0	40,0	69173
0.3281	8,334 mm	21/64	10,0	89,0	47,0	34,0	40,0	56816
0.3307	$8,400 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	69174
0.3320	8,433 mm	0	10,0	89,0	47,0	34,0	40,0	56817
0.3346	8,500 mm		10,0	89,0	47,0	34,0	40,0	69175
0.3386	8,600 mm		10,0	89,0	47,0	34,0	40,0	69176
0.3425	$8,700 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	69177
0.3438	8,733 mm	11/32	10,0	89,0	47,0	34,0	40,0	56818
0.3465	8,800 mm		10,0	89,0	47,0	34,0	40,0	69178
0.3504	8,900 mm		10,0	89,0	47,0	34,0	40,0	69179
0.3543	$9,000 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	69180
0.3583	9,100 mm		10,0	89,0	47,0	33,0	40,0	69181
0.3594	9,129 mm	23/64	10,0	89,0	47,0	33,0	40,0	56819
0.3622	9,200 mm		10,0	89,0	47,0	33,0	40,0	69182
0.3661	9,300 mm		10,0	89,0	47,0	33,0	40,0	69183
0.3680	$9,347 \mathrm{~mm}$	U	10,0	89,0	47,0	33,0	40,0	56820
0.3701	9,400 mm		10,0	89,0	47,0	33,0	40,0	69184
0.3740	$9,500 \mathrm{~mm}$		10,0	89,0	47,0	33,0	40,0	69185
0.3750	9,525 mm	3/8	10,0	89,0	47,0	33,0	40,0	56821
0.3780	9,600 mm		10,0	89,0	47,0	33,0	40,0	69186
0.3819	9,700 mm		10,0	89,0	47,0	32,0	40,0	69187
0.3858	9,800 mm		10,0	89,0	47,0	32,0	40,0	69188
0.3898	9,900 mm		10,0	89,0	47,0	32,0	40,0	69189
0.3906	9,921 mm	25/64	10,0	89,0	47,0	32,0	40,0	56822
0.3937	10,000 mm		10,0	89,0	47,0	32,0	40,0	69190
0.3976	10,100 mm		12,0	102,0	55,0	40,0	45,0	69191
0.4016	10,200 mm		12,0	102,0	55,0	40,0	45,0	69192

FRACTIONAL \& METRIC
Series 143M-S
Common

143M-S 3xD

FRACTIONAL \& METRIC SERIES

- Coolant through design
improves coolant flow to
extend tool life and aid
in chip evacuation
- Eccentric 2-margin
design reduces frictional
heat and minimizes
material adhesion to
the margins without
weakening the drill
- Computer controlled
edge honing protects
against chip damage
- High-performance point
design stabilizes on
contact for exceptional
hole size and cylindricity
allowing for low thrust
force and extended
tool life
- SGS Ti-NAMITE
coating provides
exceptional wear and
erosion resistance when
drilling heat resisting
alloys like Inconel,
Stainless Steel, and
Titanium Alloys
- Recommended for
materials
(475 Bhn) $50 H R c$

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	Ti-NAMITE ${ }^{\text {- }}$-A (AITiN)
0.4055	10,300 mm		12,0	102,0	55,0	40,0	45,0	69193
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	102,0	55,0	40,0	45,0	56823
0.4095	$10,400 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	69194
0.4134	10,500 mm		12,0	102,0	55,0	39,0	45,0	69195
0.4173	10,600 mm		12,0	102,0	55,0	39,0	45,0	69196
0.4213	10,700 mm		12,0	102,0	55,0	39,0	45,0	69197
0.4219	10,716 mm	27/64	12,0	102,0	55,0	39,0	45,0	56824
0.4252	10,800 mm		12,0	102,0	55,0	39,0	45,0	69198
0.4291	$10,900 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	69199
0.4331	$11,000 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	69200
0.4370	$11,100 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	69201
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	102,0	55,0	38,0	45,0	56825
0.4409	$11,200 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	69202
0.4449	$11,300 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	69203
0.4488	$11,400 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	69204
0.4528	$11,500 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	69205
0.4567	$11,600 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	69206
0.4606	$11,700 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	69207
0.4646	$11,800 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	69208
0.4685	$11,900 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	69209
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	102,0	55,0	37,0	45,0	56826
0.4724	$12,000 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	69210
0.4844	$12,304 \mathrm{~mm}$	31/64	14,0	107,0	60,0	41,0	45,0	56827
0.4921	$12,500 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	69211
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	107,0	60,0	41,0	45,0	56828
0.5039	$12,800 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	69212
0.5118	$13,000 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	69213
0.5156	$13,096 \mathrm{~mm}$	33/64	14,0	107,0	60,0	40,0	45,0	56829
0.5315	$13,500 \mathrm{~mm}$		14,0	107,0	60,0	40,0	45,0	69214
0.5433	$13,800 \mathrm{~mm}$		14,0	107,0	60,0	39,0	45,0	69215
0.5512	$14,000 \mathrm{~mm}$		14,0	107,0	60,0	39,0	45,0	69216
0.5625	14,288 mm	9/16	16,0	115,0	65,0	43,0	48,0	56830
0.5709	$14,500 \mathrm{~mm}$		16,0	115,0	65,0	43,0	48,0	69217
0.5781	14,684 mm	37/64	16,0	115,0	65,0	43,0	48,0	56831
0.5827	$14,800 \mathrm{~mm}$		16,0	115,0	65,0	43,0	48,0	69218
0.5906	$15,000 \mathrm{~mm}$		16,0	115,0	65,0	42,0	48,0	69219
0.6102	$15,500 \mathrm{~mm}$		16,0	115,0	65,0	42,0	48,0	69220
0.6221	15,800 mm		16,0	115,0	65,0	41,0	48,0	69221
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	115,0	65,0	41,0	48,0	56832
0.6299	$16,000 \mathrm{~mm}$		16,0	115,0	65,0	41,0	48,0	69222
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	123,0	73,0	47,0	48,0	56833
0.6875	17,463 mm	11/16	18,0	123,0	73,0	47,0	48,0	56834
0.7500	19,050 mm	3/4	20,0	131,0	79,0	50,0	50,0	56835

TOLERANCES (inch) S. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC = +.00028/+.00098 DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON = h_{6}
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
HIGH TEMP ALLOYS

For patent
information visit www.ksptpatents.com

Margins

143M-S 5xD
FRACTIONAL \& METRIC SERIES

TOLERANCES (inc
S 1181 DIAMETER

>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm) ≤ 3 DIAMETER DC $=+0,002 /+0,012$ DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=\mathrm{h}_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
$>10-18$ DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=\mathrm{h}_{6}$

For patent
information visit www.ksptpatents.com

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{\text { (AITiN) }}{\text { Ti-NAMITE }}$ AITiN)
0.1181	$3,000 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	69223
0.1220	3,100 mm		6,0	66,0	28,0	23,0	36,0	69224
0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	66,0	28,0	23,0	36,0	56836
0.1260	$3,200 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	69225
0.1299	$3,300 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	69226
0.1339	$3,400 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	69227
0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	66,0	28,0	23,0	36,0	56837
0.1378	3,500 mm		6,0	66,0	28,0	23,0	36,0	69228
0.1406	$3,571 \mathrm{~mm}$	9/64	6,0	66,0	28,0	23,0	36,0	56838
0.1417	3,600 mm		6,0	66,0	28,0	23,0	36,0	69229
0.1457	3,700 mm		6,0	66,0	28,0	23,0	36,0	69230
0.1496	$3,800 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	69231
0.1535	$3,900 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	69232
0.1562	$3,967 \mathrm{~mm}$	5/32	6,0	74,0	36,0	29,0	36,0	56839
0.1575	$4,000 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	69233
0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	74,0	36,0	29,0	36,0	56840
0.1614	$4,100 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	69234
0.1654	$4,200 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	69235
0.1693	$4,300 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	69236
0.1719	4,366 mm	11/64	6,0	74,0	36,0	29,0	36,0	56841
0.1732	$4,400 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	69237
0.1772	$4,500 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	69238
0.1811	$4,600 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	69239
0.1850	4,699 mm	\#13	6,0	74,0	36,0	29,0	36,0	69240
0.1875	4,763 mm	3/16	6,0	82,0	44,0	37,0	36,0	56842
0.1890	$4,801 \mathrm{~mm}$	\#12	6,0	82,0	44,0	37,0	36,0	69241
0.1929	$4,900 \mathrm{~mm}$		6,0	82,0	44,0	37,0	36,0	69242
0.1969	$5,000 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	69243
0.2008	$5,100 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	69244
0.2031	$5,159 \mathrm{~mm}$	13/64	6,0	82,0	44,0	36,0	36,0	56843
0.2047	$5,200 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	69245
0.2087	$5,300 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	69246
0.2126	$5,400 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	69247
0.2165	$5,500 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	69248
0.2188	5,558 mm	7/32	6,0	82,0	44,0	36,0	36,0	56844
0.2205	$5,600 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	69249
0.2244	$5,700 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	69250
0.2283	$5,800 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	69251
0.2323	$5,900 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	69252
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	82,0	44,0	35,0	36,0	56845
0.2362	6,000 mm		6,0	82,0	44,0	35,0	36,0	69253
0.2402	6,100 mm		8,0	91,0	53,0	44,0	36,0	69254
0.2441	6,200 mm		8,0	91,0	53,0	44,0	36,0	69255
0.2480	6,300 mm		8,0	91,0	53,0	44,0	36,0	69256

- Coolant through design improves coolant flow to extend tool life and aid in chip evacuation
- Eccentric 2-margin design reduces frictional heat and minimizes material adhesion to the margins without weakening the drill
- Computer controlled edge honing protects against chip damage
- High-performance point design stabilizes on contact for exceptional hole size and cylindricity allowing for low thrust force and extended tool life
- SGS Ti-NAMITE - -A coating provides exceptional wear and erosion resistance when drilling heat resisting alloys like Inconel, Stainless Steel, and Titanium Alloys
- Recommended for materials $\leq 50 \mathrm{HRc}$ (475 Bhn)

FRACTIONAL \& METRIC
Series 143M-S
$\underset{\text { Common }}{\infty}$

Margins

143M-S 5xD

FRACTIONAL \& METRIC SERIES

- Coolant through design improves coolant flow to extend tool life and aid in chip evacuation
- Eccentric 2-margin design reduces frictional heat and minimizes material adhesion to the margins without weakening the drill
- Computer controlled edge honing protects against chip damage
- High-performance point design stabilizes on contact for exceptional hole size and cylindricity allowing for low thrust force and extended tool life
- SGS Ti-NAMITE ${ }^{\oplus}$-A coating provides exceptional wear and erosion resistance when drilling heat resisting alloys like Inconel, Stainless Steel, and Titanium Alloys
- Recommended for materials $\leq 50 \mathrm{HRc}$ (475 Bhn)

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \\ & \text { LCFF } \end{aligned}$	USABLE LENGTH LU	SHANK LENGTH LS	Ti-NAMITE ${ }^{\text {® }}$-A (AITiN)
0.2500	6,350 mm	1/4 E \#0	8,0	91,0	53,0	43,0	36,0	56846
0.2520	$6,400 \mathrm{~mm}$		8,0	91,0	53,0	43,0	36,0	69257
0.2559	6,500 mm		8,0	91,0	53,0	43,0	36,0	69258
0.2570	6,528 mm	F	8,0	91,0	53,0	43,0	36,0	56847
0.2598	6,600 mm		8,0	91,0	53,0	43,0	36,0	69259
0.2638	6,700 mm		8,0	91,0	53,0	43,0	36,0	69260
0.2656	6,746 mm	17/64	8,0	91,0	53,0	43,0	36,0	56848
0.2677	6,800 mm		8,0	91,0	53,0	43,0	36,0	69261
0.2717	6,900 mm		8,0	91,0	53,0	43,0	36,0	69262
0.2756	7,000 mm		8,0	91,0	53,0	42,0	36,0	69263
0.2795	7,100 mm		8,0	91,0	53,0	42,0	36,0	69264
0.2812	7,142 mm	9/32	8,0	91,0	53,0	42,0	36,0	56849
0.2835	7,200 mm		8,0	91,0	53,0	42,0	36,0	69265
0.2874	7,300 mm		8,0	91,0	53,0	42,0	36,0	69266
0.2913	7,400 mm		8,0	91,0	53,0	42,0	36,0	69267
0.2953	7,500 mm		8,0	91,0	53,0	42,0	36,0	69268
0.2969	7,541 mm	19/64	8,0	91,0	53,0	42,0	36,0	56850
0.2992	7,600 mm		8,0	91,0	53,0	42,0	36,0	69269
0.3031	7,700 mm		8,0	91,0	53,0	41,0	36,0	69270
0.3071	7,800 mm		8,0	91,0	53,0	41,0	36,0	69271
0.3110	7,900 mm		8,0	91,0	53,0	41,0	36,0	69272
0.3125	7,938 mm	5/16	8,0	91,0	53,0	41,0	36,0	56851
0.3150	8,000 mm		8,0	91,0	53,0	41,0	36,0	69273
0.3189	8,100 mm		10,0	103,0	61,0	49,0	40,0	69274
0.3228	8,200 mm		10,0	103,0	61,0	49,0	40,0	69275
0.3268	8,300 mm		10,0	103,0	61,0	49,0	40,0	69276
0.3281	8,334 mm	21/64	10,0	103,0	61,0	48,0	40,0	56852
0.3307	8,400 mm		10,0	103,0	61,0	48,0	40,0	69277
0.3320	$8,433 \mathrm{~mm}$	0	10,0	103,0	61,0	48,0	40,0	56853
0.3346	8,500 mm		10,0	103,0	61,0	48,0	40,0	69278
0.3386	8,600 mm		10,0	103,0	61,0	48,0	40,0	69279
0.3425	8,700 mm		10,0	103,0	61,0	48,0	40,0	69280
0.3438	8,733 mm	11/32	10,0	103,0	61,0	48,0	40,0	56854
0.3465	8,800 mm		10,0	103,0	61,0	48,0	40,0	69281
0.3504	8,900 mm		10,0	103,0	61,0	48,0	40,0	69282
0.3543	9,000 mm		10,0	103,0	61,0	48,0	40,0	69283
0.3583	9,100 mm		10,0	103,0	61,0	47,0	40,0	69284
0.3594	9,129 mm	23/64	10,0	103,0	61,0	47,0	40,0	56855
0.3622	9,200 mm		10,0	103,0	61,0	47,0	40,0	69285
0.3661	9,300 mm		10,0	103,0	61,0	47,0	40,0	69286
0.3680	9,347 mm	U	10,0	103,0	61,0	47,0	40,0	56856
0.3701	$9,400 \mathrm{~mm}$		10,0	103,0	61,0	47,0	40,0	69287
0.3740	9,500 mm		10,0	103,0	61,0	47,0	40,0	69288
0.3750	9,525 mm	3/8	10,0	103,0	61,0	47,0	40,0	56857

TOLERANCES (inch) $\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON = h_{6}
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
HIGH TEMP ALLOYS

For patent
information visit www.ksptpatents.com

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	Ti-NAMITE ${ }^{\text {® }}$-A (AITiN)
0.3780	9,600 mm		10,0	103,0	61,0	47,0	40,0	69289
0.3819	9,700 mm		10,0	103,0	61,0	46,0	40,0	69290
0.3858	$9,800 \mathrm{~mm}$		10,0	103,0	61,0	46,0	40,0	69291
0.3898	9,900 mm		10,0	103,0	61,0	46,0	40,0	69292
0.3906	9,921 mm	25/64	10,0	103,0	61,0	46,0	40,0	56858
0.3937	$10,000 \mathrm{~mm}$		10,0	103,0	61,0	46,0	40,0	69293
0.3976	$10,100 \mathrm{~mm}$		12,0	118,0	71,0	56,0	45,0	69294
0.4016	$10,200 \mathrm{~mm}$		12,0	118,0	71,0	56,0	45,0	69295
0.4055	$10,300 \mathrm{~mm}$		12,0	118,0	71,0	56,0	45,0	69296
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	118,0	71,0	56,0	45,0	56859
0.4095	$10,400 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	69297
0.4134	$10,500 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	69298
0.4173	$10,600 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	69299
0.4213	10,700 mm		12,0	118,0	71,0	55,0	45,0	69300
0.4219	10,716 mm	27/64	12,0	118,0	71,0	55,0	45,0	56860
0.4252	10,800 mm		12,0	118,0	71,0	55,0	45,0	69301
0.4291	$10,900 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	69302
0.4331	$11,000 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	69303
0.4370	$11,100 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	69304
0.4375	11,113 mm	7/16	12,0	118,0	71,0	54,0	45,0	56861
0.4409	$11,200 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	69305
0.4449	$11,300 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	69306
0.4488	$11,400 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	69307
0.4528	$11,500 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	69308
0.4567	$11,600 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	69309
0.4606	$11,700 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	69310
0.4646	$11,800 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	69311
0.4685	$11,900 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	69312
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	118,0	71,0	53,0	45,0	56862
0.4724	$12,000 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	69313
0.4844	$12,304 \mathrm{~mm}$	31/64	14,0	124,0	77,0	58,0	45,0	56863
0.4921	$12,500 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	69314
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	124,0	77,0	58,0	45,0	56864
0.5039	$12,800 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	69315
0.5118	$13,000 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	69316
0.5156	13,096 mm	33/64	14,0	124,0	77,0	57,0	45,0	56865
0.5315	$13,500 \mathrm{~mm}$		14,0	124,0	77,0	57,0	45,0	69317
0.5433	13,800 mm		14,0	124,0	77,0	56,0	45,0	69318
0.5512	$14,000 \mathrm{~mm}$		14,0	124,0	77,0	56,0	45,0	69319
0.5625	$14,288 \mathrm{~mm}$	9/16	16,0	133,0	83,0	61,0	48,0	56866
0.5709	$14,500 \mathrm{~mm}$		16,0	133,0	83,0	61,0	48,0	69320
0.5781	$14,684 \mathrm{~mm}$	37/64	16,0	133,0	83,0	61,0	48,0	56867
0.5827	$14,800 \mathrm{~mm}$		16,0	133,0	83,0	61,0	48,0	69321
0.5906	$15,000 \mathrm{~mm}$		16,0	133,0	83,0	60,0	48,0	69322
0.6102	$15,500 \mathrm{~mm}$		16,0	133,0	83,0	60,0	48,0	69323
0.6221	15,800 mm		16,0	133,0	83,0	59,0	48,0	69324
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	133,0	83,0	59,0	48,0	56868
0.6299	$16,000 \mathrm{~mm}$		16,0	133,0	83,0	59,0	48,0	69325
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	143,0	93,0	68,0	48,0	56869
0.6875	17,463 mm	11/16	18,0	143,0	93,0	67,0	48,0	56870
0.7500	19,050 mm	3/4	20,0	153,0	101,0	72,0	50,0	56871

FRACTIONAL
Series 143M-S

Series 143M-S Fractional		Hardness	$\begin{gathered} \text { Vc } \\ (\mathrm{sfm}) \end{gathered}$		DC - in							
				1/8	3/16	1/4	3/8	1/2	5/8	3/4		
	CARBON STEELS 1018, 1040, 1080, 1090, 10L50, 1140, 1212, 12L15, 1525, 1536		$\begin{aligned} & \leq 175 \mathrm{Bhn} \\ & \text { or } \\ & \leq 7 \mathrm{HRc} \end{aligned}$	425	RPM	12988	8659	6494	4329	3247	2598	2165
		(340-510)		Fr	0.0039	0.0059	0.0079	0.0118	0.0157	0.0196	0.0236	
				Feed (ipm)	51.0	51.0	51.0	51.0	51.0	51.0	51.0	
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	380	RPM	11613	7742	5806	3871	2903	2323	1935	
			(304-456)	Fr	0.0035	0.0053	0.0071	0.0106	0.0141	0.0177	0.0212	
				Feed (ipm)	41.0	41.0	41.0	41.0	41.0	41.0	41.0	
		$\begin{aligned} & \leq 425 \mathrm{Bhn} \\ & \text { or } \\ & \leq 45 \mathrm{HRc} \end{aligned}$	220	RPM	6723	4482	3362	2241	1681	1345	1121	
			(176-264)	Fr	0.0030	0.0045	0.0059	0.0089	0.0119	0.0149	0.0178	
				Feed (ipm)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	
P	ALLOY STEELS 4140, 4150, 4320, 5120, 5150, 8630, 86L20, 50100	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	330	RPM	10085	6723	5042	3362	2521	2017	1681	
			(264-396)	Fr	0.0030	0.0045	0.0059	0.0089	0.0119	0.0149	0.0178	
				Feed (ipm)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	
		$\begin{gathered} \leq 375 \text { Bhn } \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	200	RPM	6112	4075	3056	2037	1528	1222	1019	
			(160-240)	Fr	0.0025	0.0038	0.0051	0.0076	0.0101	0.0127	0.0152	
				Feed (ipm)	15.5	15.5	15.5	15.5	15.5	15.5	15.5	
		$\begin{aligned} & \leq 425 \mathrm{Bhn} \\ & \text { or } \\ & \leq 45 \mathrm{HRc} \end{aligned}$	140	RPM	4278	2852	2139	1426	1070	856	713	
			(112-168)	Fr	0.0018	0.0027	0.0036	0.0054	0.0072	0.0090	0.0108	
				Feed (ipm)	7.7	7.7	7.7	7.7	7.7	7.7	7.7	
	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{gathered} \leq 200 \text { Bhn } \\ \text { or } \\ \leq 13 \mathrm{HRc} \end{gathered}$	145	RPM	4431	2954	2216	1477	1108	886	739	
			(116-174)	Fr	0.0026	0.0039	0.0052	0.0078	0.0104	0.0130	0.0156	
				Feed (ipm)	11.5	11.5	11.5	11.5	11.5	11.5	11.5	
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	95	RPM	2903	1935	1452	968	726	581	484	
			(76-114)	Fr	0.0012	0.0018	0.0024	0.0036	0.0048	0.0060	0.0072	
				Feed (ipm)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
M	STAINLESS STEELS (FREE MACHINING) 303, 416, 420F, 430F, 440F	$\begin{aligned} & \leq 185 \text { Bhn } \\ & \text { or } \\ & \leq 9 \mathrm{HRc} \end{aligned}$	325	RPM	9932	6621	4966	3311	2483	1986	1655	
			(260-390)	Fr	0.0030	0.0045	0.0060	0.0091	0.0121	0.0151	0.0181	
				Feed (ipm)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	210	RPM	6418	4278	3209	2139	1604	1284	1070	
			(168-252)	Fr	0.0023	0.0035	0.0047	0.0070	0.0093	0.0117	0.0140	
				Feed (ipm)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	
	STAINLESS STEELS (DIFFICULT) 304, 316, 321, 13-8 PH, 15-5PH, 17-4 PH, Custom 450	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	160	RPM	4890	3260	2445	1630	1222	978	815	
			(128-192)	Fr	0.0023	0.0035	0.0047	0.0070	0.0093	0.0117	0.0140	
				Feed (ipm)	11.4	11.4	11.4	11.4	11.4	11.4	11.4	
		$\begin{gathered} \leq 375 \text { Bhn } \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	115	RPM	3514	2343	1757	1171	879	703	586	
			(92-138)	Fr	0.0021	0.0031	0.0042	0.0062	0.0083	0.0104	0.0125	
				Feed (ipm)	7.3	7.3	7.3	7.3	7.3	7.3	7.3	
										continu	next pag	

			$\begin{gathered} \text { Vc } \\ (\mathrm{sfm}) \end{gathered}$		DC - in						
	Fractional	Hardness			$1 / 8$	3/16	1/4	3/8	1/2	5/8	3/4
	CAST IRONS Gray, Malleable, Ductile	$\begin{aligned} & \leq 220 \text { Bhn } \\ & \text { or } \\ & \leq 19 \mathrm{HRc} \end{aligned}$	360	RPM	11002	7334	5501	3667	2750	2200	1834
			(288-432)	Fr	0.0045	0.0068	0.0091	0.0136	0.0182	0.0227	0.0273
				Feed (ipm)	50.0	50.0	50.0	50.0	50.0	50.0	50.0
		$\begin{aligned} & \leq 260 \text { Bhn } \\ & \text { or } \\ & \leq 26 \mathrm{HRc} \end{aligned}$	335	RPM	10238	6825	5119	3413	2559	2048	1706
			(268-402)	Fr	0.0045	0.0068	0.0091	0.0136	0.0182	0.0227	0.0273
				Feed (ipm)	46.5	46.5	46.5	46.5	46.5	46.5	46.5
	HIGH TEMP ALLOYS (NICKEL, COBALT, IRON BASE) Inconel 601, 617, 625, Incoloy, Monel 400, Rene, Waspaloy	$\begin{gathered} \leq 300 \text { Bhn } \\ \text { or } \\ \leq 32 \mathrm{HRc} \end{gathered}$	130	RPM	3973	2649	1986	1324	993	795	662
			(104-156)	Fr	0.0014	0.0022	0.0029	0.0043	0.0057	0.0072	0.0086
				Feed (ipm)	5.7	5.7	5.7	5.7	5.7	5.7	5.7
		$\begin{aligned} & \leq 400 \text { Bhn } \\ & \text { or } \\ & \leq 43 \mathrm{HRc} \end{aligned}$	70	RPM	2139	1426	1070	713	535	428	357
			(56-84)	Fr	0.0012	0.0018	0.0024	0.0036	0.0049	0.0061	0.0073
				Feed (ipm)	2.6	2.6	2.6	2.6	2.6	2.6	2.6
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6AI2Sn4Zr2Mo, Ti4AI4Mo2Sn0.5Si, Ti-6AI4V	$\begin{aligned} & \leq 275 \mathrm{Bhn} \\ & \text { or } \\ & \leq 28 \mathrm{HRc} \end{aligned}$	215	RPM	6570	4380	3285	2190	1643	1314	1095
			(172-258)	Fr	0.0018	0.0026	0.0035	0.0053	0.0070	0.0088	0.0105
				Feed (ipm)	11.5	11.5	11.5	11.5	11.5	11.5	11.5
		$\begin{aligned} & \leq 350 \text { Bhn } \\ & \text { or } \\ & \leq 38 \mathrm{HRc} \end{aligned}$	160	RPM	4890	3260	2445	1630	1222	978	815
			(128-192)	Fr	0.0016	0.0024	0.0032	0.0048	0.0064	0.0080	0.0096
				Feed (ipm)	7.8	7.8	7.8	7.8	7.8	7.8	7.8
		$\begin{aligned} & \leq 440 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	85	RPM	2598	1732	1299	866	649	520	433
			(68-102)	Fr	0.0012	0.0018	0.0024	0.0036	0.0048	0.0060	0.0072
				Feed (ipm)	3.1	3.1	3.1	3.1	3.1	3.1	3.1

Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
rpm = Vc x 3.82 / DC
ipm = Fr x RPM
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard® for complete technical information (www.kyocera-sgstool.com)

continued on next page

HIGH PERFORMANCE CARBIDE DRILLS

	Series		$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{min}) \end{gathered}$		DC • mm						
	Metric	Hardness			3	6	8	10	12	14	16
	CAST IRONS Gray, Malleable, Ductile	$\begin{gathered} \leq 220 \text { Bhn } \\ \text { or } \\ \leq 19 \mathrm{HRc} \end{gathered}$	110	RPM	11633	5816	4362	3490	2908	2493	2181
			(88-132)	Fr	0.109	0.218	0.291	0.364	0.437	0.509	0.582
				Feed (mm/min)	1270	1270	1270	1270	1270	1270	1270
		$\begin{aligned} & \leq 260 \mathrm{Bhn} \\ & \text { or } \\ & \leq 26 \mathrm{HRc} \end{aligned}$	102	RPM	10825	5413	4059	3248	2706	2320	2030
			(82-123)	Fr	0.109	0.218	0.291	0.364	0.436	0.509	0.582
				Feed (mm/min)	1181	1181	1181	1181	1181	1181	1181
	HIGH TEMP ALLOYS (Nickel, Cobalt, Iron Base) Inconel 601, 617, 625, Incoloy, Monel 400, Rene, Waspaloy	$\begin{aligned} & \leq 300 \text { Bhn } \\ & \text { or } \\ & \leq 32 \mathrm{HRc} \end{aligned}$	40	RPM	4201	2100	1575	1260	1050	900	788
			(32-48)	Fr	0.034	0.069	0.092	0.115	0.138	0.161	0.184
				Feed (mm/min)	145	145	145	145	145	145	145
		$\begin{aligned} & \leq 400 \mathrm{Bhn} \\ & \text { or } \\ & \leq 43 \mathrm{HRc} \end{aligned}$	21	RPM	2262	1131	848	679	565	485	424
			(17-26)	Fr	0.029	0.058	0.078	0.097	0.117	0.136	0.156
				Feed (mm/min)	66	66	66	66	66	66	66
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6AI2Sn4Zr2Mo, Ti4AI4Mo2Sn0.5Si, Ti-6AI4V	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \quad \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	66	RPM	6947	3474	2605	2084	1737	1489	1303
			(52-79)	Fr	0.042	0.084	0.112	0.140	0.168	0.196	0.224
				Feed (mm/min)	292	292	292	292	292	292	292
		$\begin{gathered} \leq 350 \mathrm{Bhn} \\ \text { or } \\ \leq 38 \mathrm{HRc} \end{gathered}$	49	RPM	5170	2585	1939	1551	1293	1108	969
			(39-59)	Fr	0.038	0.077	0.102	0.128	0.153	0.179	0.204
				Feed (mm/min)	198	198	198	198	198	198	198
		$\begin{aligned} & \leq 440 \mathrm{Bhn} \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	26	RPM	2747	1373	1030	824	687	589	515
			(21-31)	Fr	0.029	0.057	0.076	0.096	0.115	0.134	0.153
				Feed (mm/min)	79	79	79	79	79	79	79

Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
rpm $=(\mathrm{Vc} \times 1000) /(\mathrm{DC} \times 3.14)$
$\mathrm{mm} / \mathrm{min}=\mathrm{Fr} \times \mathrm{RPM}$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

PERFORMANCE.

PRECISION.

SERIES 141K Hole Size Comparison vs. Competition in Class 40 Cast Iron

PASSION.

Lab Results Indicate the Hi-Per Carb ${ }^{\circledR}$ Series 141 K Drill outperforms the competition in measured hole quality at a variety of speed and feed rates.

TQNAMMTEOM

Features of Ti-NAMITE®-M include high wear resistance, reduced friction, and excellent prevention of cutting edge build up. This coating allows superior material removal rates and tool life when used in high performance operations in Cast Iron and Steel and with difficult to machine materials like Titanium.
Hardness (HV): 3600
Oxidation Temperature: $1150^{\circ} \mathrm{C} / 2100^{\circ} \mathrm{F}$
Coefficient of Friction: 0.45
Thickness: 1-4 Microns (based on tool diameter)

FRACTIONAL \& METRIC SERIES

TOLERANCES (inch)	inch \& mm								EDP NO.
S. 1181 DIAMETER DC $=+.00008 /+.00047$ DCON $=h_{6}$	$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	$\begin{gathered} \text { FRACTIONALL } \\ \text { LETTER/WIRE } \\ \text { DC } \end{gathered}$	SHANK DIAMETER DCON	OVERALL Length OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGHM } \\ & \text { LCF } \end{aligned}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGGH } \\ \text { LS } \end{gathered}$	$\underset{\text { (TM) }}{\text { Ti-NAMITE® }}$
	0.1181	$3,000 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	65160
$\begin{aligned} & >.1181-.2362 \text { DIAMETER } \\ & \text { DC } \quad=+.00016 /+.00063 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1220	$3,100 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	65161
	0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	66,0	28,0	23,0	36,0	55160
	0.1260	$3,200 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	65162
$\begin{aligned} & >.2362-.3937 \text { DIAMETER } \\ & \text { DC } \quad=+.00024 /+.00083 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1299	$3,300 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	65163
	0.1339	$3,400 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	65164
$\begin{aligned} & >.3937-.7087 \text { DIAMETER } \\ & \text { DC }=+.00028 /+.00098 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1360	3,454 mm	\#29	6,0	66,0	28,0	23,0	36,0	55161
	0.1378	3,500 mm		6,0	66,0	28,0	23,0	36,0	65165
	0.1406	3,571 mm	9/64	6,0	66,0	28,0	23,0	36,0	55162
$\begin{aligned} & >.7087-1.1811 \text { DIAMETER } \\ & \text { DC }=+.00031 /+.00114 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1417	$3,600 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	65166
	0.1457	$3,700 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	65167
	0.1496	$3,800 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65168
	0.1535	$3,900 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65169
TOLERANCES (mm)	0.1562	$3,967 \mathrm{~mm}$	5/32	6,0	74,0	36,0	29,0	36,0	55163
≤ 3 diameter DC $=+0,002 /+0,012$ DCON $=h_{6}$	0.1575	$4,000 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65170
	0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	74,0	36,0	29,0	36,0	55164
	0.1614	$4,100 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65171
>3-6 DIAMETER DC $=+0,004 /+0,016$ DCON $=h_{6}$	0.1654	$4,200 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65172
	0.1693	$4,300 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65173
	0.1719	$4,366 \mathrm{~mm}$	11/64	6,0	74,0	36,0	29,0	36,0	55165
>6-10 DIAMETER DC $=+0,006 /+0,021$ DCON $=h_{6}$	0.1732	$4,400 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65174
	0.1772	$4,500 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65175
	0.1811	$4,600 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65176
>10-18 dIAMETER DC $=+0,007 /+0,025$ DCON $=h_{6}$	0.1850	$4,699 \mathrm{~mm}$	\#13	6,0	74,0	36,0	29,0	36,0	65177
	0.1875	$4,763 \mathrm{~mm}$	3/16	6,0	82,0	44,0	37,0	36,0	55166
>18-30 diameter DC $=+0,008 /+0,029$ DCON $=\mathrm{h}_{6}$	0.1890	$4,801 \mathrm{~mm}$	\#12	6,0	82,0	44,0	37,0	36,0	65178
	0.1929	$4,900 \mathrm{~mm}$		6,0	82,0	44,0	37,0	36,0	65179
	0.1969	$5,000 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65180
	0.2008	$5,100 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65181
CASTIRON	0.2031	$5,159 \mathrm{~mm}$	13/64	6,0	82,0	44,0	36,0	36,0	55167
	0.2047	$5,200 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65182
For patent information visit www.ksptpatents.com	0.2087	$5,300 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65183
	0.2126	$5,400 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65184
	0.2165	$5,500 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65185
	0.2188	$5,558 \mathrm{~mm}$	7/32	6,0	82,0	44,0	36,0	36,0	55168
	0.2205	$5,600 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65186
								ntinued	on next page

- 3-margin design improves hole stability and size control while providing superior finish, roundness and cylindricity
- Self-stabilizing pyramid point design stabilizes the drill on contact with the workpiece
- Open flute structure efficiently transports chips while maintaining strength at high feed rates
- Sculpted gash allows chips to easily flow away from the drill center
- Recommended for materials $\leq 43 \mathrm{HRc}$ (≤ 400 Bhn)

FRACTIONAL \& METRIC
Series 141K
Common \mid Reach

- 3-margin design
improves hole stability
and size control while
providing superior
finish, roundness and
cylindricity
- Self-stabilizing pyramid
point design stabilizes
the drill on contact with
the workpiece
- Open flute structure
efficiently transports
chips while maintaining
strength at high
feed rates
- Sculpted gash allows
chips to easily flow away
from the drill center
- Recommended for
materials ≤ 43 HRc
(≤ 400 Bhn)

inch \& mm								EDP NO.	TOLERANCES (inch) s. 1181 DIAMETER DC $=+.00008 /+.00047$ DCON $=h_{6}$
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	$\begin{gathered} \text { FRACTIONAL/ } \\ \text { LETTER/WIRE } \\ \text { DC } \end{gathered}$	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	Ti-NAMITE ${ }^{\oplus}-M$ (TM)	
0.2244	$5,700 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	65187	
0.2283	$5,800 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	65188	>.1181-2362 DIAMETER
0.2323	$5,900 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	65189	DC $=+.00016 /+.00063$
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	82,0	44,0	35,0	36,0	55169	DCON $=\mathrm{h}_{6}$
0.2362	6,000 mm		6,0	82,0	44,0	35,0	36,0	65190	>.2362-. 3937 DIAMETER
0.2402	6,100 mm		8,0	91,0	53,0	44,0	36,0	65191	DC $=+.00024 /+.00083$
0.2441	$6,200 \mathrm{~mm}$		8,0	91,0	53,0	44,0	36,0	65192	DCO
0.2480	6,300 mm		8,0	91,0	53,0	44,0	36,0	65193	>.3937-.7087 DIAMETER
0.2500	$6,350 \mathrm{~mm}$	1/4 E \#0	8,0	91,0	53,0	43,0	36,0	55170	$\begin{aligned} & \text { DC }=+.00028 /+.00098 \\ & \text { DCON }=h_{6} \end{aligned}$
0.2520	$6,400 \mathrm{~mm}$		8,0	91,0	53,0	43,0	36,0	65194	
0.2559	$6,500 \mathrm{~mm}$		8,0	91,0	53,0	43,0	36,0	65195	>.7087-1.1811 DIAMETER DC $=+00031 /+00114$
0.2570	6,528 mm	F	8,0	91,0	53,0	43,0	36,0	55171	DCON $=h_{6}$
0.2598	6,600 mm		8,0	91,0	53,0	43,0	36,0	65196	
0.2638	6,700 mm		8,0	91,0	53,0	43,0	36,0	65197	TOLERANCES (mm)
0.2656	6,746 mm	17/64	8,0	91,0	53,0	43,0	36,0	55172	≤ 3 diameter
0.2677	6,800 mm		8,0	91,0	53,0	43,0	36,0	65198	DC $=+0,002 /+0,012$
0.2717	6,900 mm		8,0	91,0	53,0	43,0	36,0	65199	DCON $=\mathrm{h}_{6}$
0.2756	7,000 mm		8,0	91,0	53,0	42,0	36,0	65200	>3-6 diameter
0.2795	7,100 mm		8,0	91,0	53,0	42,0	36,0	65201	DC $=+0,004 /+0,016$
0.2812	7,142 mm	9/32	8,0	91,0	53,0	42,0	36,0	55173	DCON $=\mathrm{h}_{6}$
0.2835	$7,200 \mathrm{~mm}$		8,0	91,0	53,0	42,0	36,0	65202	>6-10 DIAMETER
0.2874	$7,300 \mathrm{~mm}$		8,0	91,0	53,0	42,0	36,0	65203	DC $=+0,006 /+0,021$
0.2913	$7,400 \mathrm{~mm}$		8,0	91,0	53,0	42,0	36,0	65204	DCON $=h_{6}$
0.2953	$7,500 \mathrm{~mm}$		8,0	91,0	53,0	42,0	36,0	65205	>10-18 DIAMETER
0.2969	7,541 mm	19/64	8,0	91,0	53,0	42,0	36,0	55174	DC = +0,007/+0,
0.2992	7,600 mm		8,0	91,0	53,0	42,0	36,0	65206	
0.3031	7,700 mm		8,0	91,0	53,0	41,0	36,0	65207	TiRO
0.3071	7,800 mm		8,0	91,0	53,0	41,0	36,0	65208	CAStiron
0.3110	$7,900 \mathrm{~mm}$		8,0	91,0	53,0	41,0	36,0	65209	
0.3125	$7,938 \mathrm{~mm}$	5/16	8,0	91,0	53,0	41,0	36,0	55175	For patent
0.3150	$8,000 \mathrm{~mm}$		8,0	91,0	53,0	41,0	36,0	65210	
0.3189	$8,100 \mathrm{~mm}$		10,0	103,0	61,0	49,0	40,0	65211	
0.3228	$8,200 \mathrm{~mm}$		10,0	103,0	61,0	49,0	40,0	65212	
0.3268	$8,300 \mathrm{~mm}$		10,0	103,0	61,0	49,0	40,0	65213	
0.3281	$8,334 \mathrm{~mm}$	21/64	10,0	103,0	61,0	48,0	40,0	55176	
0.3307	$8,400 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	65214	
0.3320	$8,433 \mathrm{~mm}$	0	10,0	103,0	61,0	48,0	40,0	55177	
0.3346	8,500 mm		10,0	103,0	61,0	48,0	40,0	65215	
continued on next page									

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	SHANK LENGTH LS	$\begin{aligned} & \text { Ti-NAMITE® }{ }^{\text {TiMM }} \text { (TM } \end{aligned}$
0.3386	8,600 mm		10,0	103,0	61,0	48,0	40,0	65216
0.3425	$8,700 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	65217
0.3438	$8,733 \mathrm{~mm}$	11/32	10,0	103,0	61,0	48,0	40,0	55178
0.3465	$8,800 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	65218
0.3504	$8,900 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	65219
0.3543	$9,000 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	65220
0.3583	9,100 mm		10,0	103,0	61,0	47,0	40,0	65221
0.3594	$9,129 \mathrm{~mm}$	23/64	10,0	103,0	61,0	47,0	40,0	55179
0.3622	$9,200 \mathrm{~mm}$		10,0	103,0	61,0	47,0	40,0	65222
0.3661	$9,300 \mathrm{~mm}$		10,0	103,0	61,0	47,0	40,0	65223
0.3680	$9,347 \mathrm{~mm}$	U	10,0	103,0	61,0	47,0	40,0	55180
0.3701	$9,400 \mathrm{~mm}$		10,0	103,0	61,0	47,0	40,0	65224
0.3740	9,500 mm		10,0	103,0	61,0	47,0	40,0	65225
0.3750	9,525 mm	3/8	10,0	103,0	61,0	47,0	40,0	55181
0.3780	9,600 mm		10,0	103,0	61,0	47,0	40,0	65226
0.3819	9,700 mm		10,0	103,0	61,0	46,0	40,0	65227
0.3858	9,800 mm		10,0	103,0	61,0	46,0	40,0	65228
0.3898	9,900 mm		10,0	103,0	61,0	46,0	40,0	65229
0.3906	9,921 mm	25/64	10,0	103,0	61,0	46,0	40,0	55182
0.3937	$10,000 \mathrm{~mm}$		10,0	103,0	61,0	46,0	40,0	65230
0.3976	$10,100 \mathrm{~mm}$		12,0	118,0	71,0	56,0	45,0	65231
0.4016	$10,200 \mathrm{~mm}$		12,0	118,0	71,0	56,0	45,0	65232
0.4055	$10,300 \mathrm{~mm}$		12,0	118,0	71,0	56,0	45,0	65233
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	118,0	71,0	56,0	45,0	55183
0.4095	$10,400 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	65234
0.4134	$10,500 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	65235
0.4173	$10,600 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	65236
0.4213	$10,700 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	65237
0.4219	10,716 mm	27/64	12,0	118,0	71,0	55,0	45,0	55184
0.4252	$10,800 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	65238
0.4291	10,900 mm		12,0	118,0	71,0	55,0	45,0	65239
0.4331	$11,000 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65240
0.4370	$11,100 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65241
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	118,0	71,0	54,0	45,0	55185
0.4409	$11,200 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65242
0.4449	$11,300 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65243
0.4488	$11,400 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65244
0.4528	$11,500 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65245
0.4567	$11,600 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65246
0.4606	$11,700 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	65247
0.4646	$11,800 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	65248
0.4685	$11,900 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	65249
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	118,0	71,0	53,0	45,0	55186
0.4724	$12,000 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	65250
							ontinued	on next page

FRACTIONAL \& METRIC
Series 141K
Common
$5 \pi \approx D$
Reach
Helix Angle
Reach
Internal
Coolant
Point Angle
Margins

- 3-margin design improves hole stability and size control while providing superior finish, roundness and cylindricity	inch \& mm								EDP NO.
	$\begin{gathered} \text { DECIMAL } \\ \text { DC } \end{gathered}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	Ti-NAMITE ${ }^{\text {® }}-\mathrm{M}$ (TM)
	0.4844	12,304 mm	31/64	14,0	124,0	77,0	58,0	45,0	55187
	0.4921	12,500 mm		14,0	124,0	77,0	58,0	45,0	65251
point design stabilizes	0.5000	12,700 mm	1/2	14,0	124,0	77,0	58,0	45,0	55188
the drill on contact with the workpiece	0.5039	12,800 mm		14,0	124,0	77,0	58,0	45,0	65252
- Open flute structure	0.5118	$13,000 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	65253
efficiently transports	0.5156	13,096 mm	33/64	14,0	124,0	77,0	57,0	45,0	55189
strength at high	0.5315	$13,500 \mathrm{~mm}$		14,0	124,0	77,0	57,0	45,0	65254
feed rates	0.5433	13,800 mm		14,0	124,0	77,0	56,0	45,0	65255
- Sculpted gash allows chips to easily flow away	0.5512	$14,000 \mathrm{~mm}$		14,0	124,0	77,0	56,0	45,0	65256
from the drill center	0.5625	14,288 mm	9/16	16,0	133,0	83,0	61,0	48,0	55190
- Recommended for	0.5709	14,500 mm		16,0	133,0	83,0	61,0	48,0	65257
$(\leq 400 \mathrm{Bhn})$	0.5781	14,684 mm	37/64	16,0	133,0	83,0	61,0	48,0	55191
	0.5827	14,800 mm		16,0	133,0	83,0	61,0	48,0	65258
	0.5906	15,000 mm		16,0	133,0	83,0	60,0	48,0	65259
	0.6102	15,500 mm		16,0	133,0	83,0	60,0	48,0	65260
	0.6221	15,800 mm		16,0	133,0	83,0	59,0	48,0	65261
	0.6250	15,875 mm	5/8	16,0	133,0	83,0	59,0	48,0	55192
	0.6299	16,000 mm		16,0	133,0	83,0	59,0	48,0	65262
	0.6562	16,667 mm	21/32	18,0	143,0	93,0	68,0	48,0	55193
	0.6875	17,463 mm	11/16	18,0	143,0	93,0	67,0	48,0	55194
	0.7500	19,050 mm	3/4	20,0	153,0	101,0	72,0	50,0	55195

TOLERANCES (inch) s. 1181 DIAMETER DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-2362 DIAMETER
DC $=+.00016 /+.00063$
DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=\mathrm{h}_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=\mathrm{h}_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$

CAST IRON

For patent information visit www.ksptpatents.com

			$\underset{(\mathrm{sfm})}{\mathrm{Vc}}$		DC - in							
	Fractional	Hardness			1/8	3/16	1/4	3/8	1/2	5/8	3/4	
GRAY CAST IRON FERRITIC ASTM A48: CLASS 20 SAE J431C: GRADE 1800		$\begin{aligned} & \leq 150 \text { Bhn } \\ & \text { or } \\ & \leq 1 \mathrm{HRc} \end{aligned}$	450	RPM	13752	9168	6876	4584	3438	2750	2292	
		(360-540)	Fr	0.0049	0.0074	0.0099	0.0148	0.0198	0.0247	0.0297		
		Feed (ipm)	68	68	68	68	68	68	68			
GRAY CAST IRON PEARLITIC ASTM A48: CLASS 30, 35, 40 SAE J431C: GRADE 3000			$\begin{aligned} & \leq 220 \text { Bhn } \\ & \text { or } \\ & \leq 19 \mathrm{HRc} \end{aligned}$	375	RPM	11460	7640	5730	3820	2865	2292	1910
		(300-450)		Fr	0.0039	0.0059	0.0079	0.0118	0.0157	0.0196	0.0236	
		Feed (ipm)		45	45	45	45	45	45	45		
K			$\begin{aligned} & \leq 250 \text { Bhn } \\ & \text { or } \\ & \leq 25 \mathrm{HRc} \end{aligned}$	325	RPM	9932	6621	4966	3311	2483	1986	1655
	COMPACTED GRAPHITE IRON	(260-390)		Fr	0.0039	0.0059	0.0079	0.0118	0.0157	0.0196	0.0236	
				Feed (ipm)	39	39	39	39	39	39	39	
MALLEABLE CAST IRON FERRITIC ASTM A220: GRADE 40010 SAE J158: GRADE M4504		$\begin{gathered} \leq 160 \text { Bhn } \\ \text { or } \\ \leq 3 \mathrm{HRc} \end{gathered}$	450	RPM	13752	9168	6876	4584	3438	2750	2292	
		(360-540)	Fr	0.0049	0.0074	0.0099	0.0148	0.0198	0.0247	0.0297		
		Feed (ipm)	68	68	68	68	68	68	68			
MALLEABLE CAST IRON MARTENSITE ASTM A220: GRADE 90001 SAE J158: GRADE M8501			$\begin{aligned} & \leq 320 \text { Bhn } \\ & \text { or } \\ & \leq 34 \mathrm{HRc} \end{aligned}$	250	RPM	7640	5093	3820	2547	1910	1528	1273
		(200-300)		Fr	0.0031	0.0047	0.0063	0.0094	0.0126	0.0157	0.0188	
		Feed (ipm)		24	24	24	24	24	24	24		

Bhn (Brinell) HRc (Rockwell C)
rpm $=\mathrm{Vc} \times 3.82 / \mathrm{DC}$
$\mathrm{ipm}=\mathrm{Fr} \times \mathrm{rpm}$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

	Series		$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{min}) \end{gathered}$		DC • mm						
	Metric	Hardness			3	6	8	10	12	14	16
	GRAY CAST IRON FERRITIC ASTM A48: CLASS 20 SAE J431C: GRADE 1800	$\begin{gathered} \leq 150 \text { Bhn } \\ \text { or } \\ \leq 1 \mathrm{HRc} \end{gathered}$	137	RPM	14541	7271	5453	4362	3635	3116	2726
			(110-165)	Fr	0.119	0.237	0.316	0.395	0.475	0.554	0.633
				Feed (mm/min)	1725	1725	1725	1725	1725	1725	1725
	GRAY CAST IRON PEARLITIC ASTM A48: CLASS 30, 35, 40 SAE J431C: GRADE 3000	$\begin{gathered} \leq 220 \text { Bhn } \\ \text { or } \\ \leq 19 \mathrm{HRc} \end{gathered}$	114	RPM	12118	6059	4544	3635	3029	2597	2272
			(91-137)	Fr	0.094	0.189	0.252	0.315	0.378	0.441	0.504
				Feed (mm/min)	1145	1145	1145	1145	1145	1145	1145
K	COMPACTED GRAPHITE IRON	$\begin{aligned} & \leq 250 \text { Bhn } \\ & \text { or } \\ & \leq 25 \mathrm{HRc} \end{aligned}$	99	RPM	10502	5251	3938	3151	2626	2250	1969
			(79-119)	Fr	0.094	0.189	0.251	0.314	0.377	0.440	0.503
				Feed (mm/min)	990	990	990	990	990	990	990
	MALLEABLE CAST IRON FERRITIC ASTM A220: GRADE 40010 SAE J158: GRADE M4504	$\begin{aligned} & \leq 160 \text { Bhn } \\ & \text { or } \\ & \leq 3 \mathrm{HRc} \end{aligned}$	137	RPM	14541	7271	5453	4362	3635	3116	2726
			(110-165)	Fr	0.119	0.237	0.316	0.395	0.475	0.554	0.633
				Feed (mm/min)	1725	1725	1725	1725	1725	1725	1725
	MALLEABLE CAST IRON MARTENSITE ASTM A220: GRADE 90001 SAE J158: GRADE M8501	$\begin{gathered} \leq 320 \text { Bhn } \\ \text { or } \\ \leq 34 \mathrm{HRc} \end{gathered}$	76	RPM	8078	4039	3029	2424	2020	1731	1515
			(61-91)	Fr	0.076	0.151	0.201	0.252	0.302	0.352	0.403
				Feed (mm/min)	610	610	610	610	610	610	610

(Brinell) HRc (Rockwell C)
rpm $=(\mathrm{Vc} \times 1000) /(\mathrm{DC} \times 3.14)$
$\mathrm{mm} / \mathrm{min}=\mathrm{Fr} \times \mathrm{rpm}$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

SERIES 131N

The key features designed into the Hi-PerCarb ${ }^{\circledR}$ Series 131N Drill allow the product to offer application benefits not only beyond that of standard carbide drills, but also other High Performance drills. Each feature of the Hi-PerCarb ${ }^{\circledR}$ Series 131 N Drill was uniquely engineered as a solution towards addressing the issues commonly encountered during high production drilling.
A) 3-MARGIN DESIGN

- superior surface finish, roundness and hole cylindricity
- unsurpassed hole size control

B SELF-STABILIZING POINT

- pyramid design stabilizes the drill on contact with the workpiece
C OPEN FLUTE STRUCTURE
- efficiently transports chips while maintaining strength at high feed rates
(D) SCULPTED GASH
- allows chips to easily flow away from the drill center
- reduced cutting forces over competitive three-flute designs
(E) - MINIMAL MARGIN DESIGN excessive margin contact with the workpiece
- parallel design maintains contact width as margin wears for performance consistency

PERFORMANCE. PRECISION. PASSION. HI-PERCARB ${ }^{\oplus}$ SERIES 131N ALUMINUM DRILLS

PERFORMANCE.

PRECISION.

SERIES 131N 3 Flute Drill vs. Competition 2 Flute Drill in 2024 Aluminum

4847 RPM 65 INCHES PER MINUTE

6786 RPM

100 INCHES PER MINUTE

PASSION.

Lab Results Indicate the Hi-Per Carb ${ }^{\circledR}$ Series 131N Drill outperforms the competition in measured hole quality at a variety of speed and feed rates.

9530 RPM
 200 INCHES PER MINUTE

This ceramic based coating ensures a smooth surface and a low affinity to cold welding or edge build-up, which makes it optimal for aluminum and copper applications. It has high toughness and high hardness.
Microhardness: 4000 HV
Oxidation Temperature: $850^{\circ} \mathrm{C} / 1562^{\circ} \mathrm{F}$
Coefficient of Friction: 0.10-0.20
Thickness: 1-2 Microns (based on tool diameter)

FRACTIONAL \& METRIC
Series 131N

-3-margin design improves hole stability and size control while providing superior finish, roundness and cylindricity

- Self-stabilizing pyramid point design stabilizes the drill on contact with the workpiece
- Open flute structure efficiently transports chips while maintaining strength at high feed rates
- Sculpted gash allows chips to easily flow away from the drill center
- Recommended for materials ≤ 175 Bhn (≤ 16 HRc)

inch \& mm								EDP NO.	
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	$\begin{gathered} \text { FRACTIONALL } \\ \text { LETTER/WIRE } \\ \text { DC } \end{gathered}$	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGGH } \\ & \text { LCF } \end{aligned}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGGH } \\ \text { LS } \end{gathered}$	UNCOATED	$\underset{\left(\mathrm{TiB}_{2}\right)}{\text { Ti-NAMITE }- \text { B }}$
0.1181	$3,000 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	64600	67600
0.1220	$3,100 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	64601	67601
0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	62,0	20,0	15,0	36,0	54600	54700
0.1260	$3,200 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	64602	67602
0.1299	$3,300 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	64603	67603
0.1339	$3,400 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	64604	67604
0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	62,0	20,0	15,0	36,0	54601	54701
0.1378	$3,500 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	64605	67605
0.1406	$3,571 \mathrm{~mm}$	9/64	6,0	62,0	20,0	15,0	36,0	54602	54702
0.1417	$3,600 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	64606	67606
0.1457	$3,700 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	64607	67607
0.1496	$3,800 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	64608	67608
0.1535	$3,900 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	64609	67609
0.1562	$3,967 \mathrm{~mm}$	5/32	6,0	66,0	24,0	18,0	36,0	54603	54703
0.1575	$4,000 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	64610	67610
0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	66,0	24,0	18,0	36,0	54604	54704
0.1614	$4,100 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	64611	67611
0.1654	$4,200 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	64612	67612
0.1693	$4,300 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	64613	67613
0.1719	$4,366 \mathrm{~mm}$	11/64	6,0	66,0	24,0	17,0	36,0	54605	54705
0.1732	$4,400 \mathrm{~mm}$		6,0	66,0	24,0	17,0	36,0	64614	67614
0.1772	$4,500 \mathrm{~mm}$		6,0	66,0	24,0	17,0	36,0	64615	67615
0.1811	$4,600 \mathrm{~mm}$		6,0	66,0	24,0	17,0	36,0	64616	67616
0.1850	$4,699 \mathrm{~mm}$	\#13	6,0	66,0	24,0	17,0	36,0	64617	67617
0.1875	$4,763 \mathrm{~mm}$	3/16	6,0	66,0	28,0	21,0	36,0	54606	54706
0.1890	$4,801 \mathrm{~mm}$	\#12	6,0	66,0	28,0	21,0	36,0	64618	67618
0.1929	$4,900 \mathrm{~mm}$		6,0	66,0	28,0	21,0	36,0	64619	67619
0.1969	$5,000 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	64620	67620
0.2008	$5,100 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	64621	67621
0.2031	$5,159 \mathrm{~mm}$	13/64	6,0	66,0	28,0	20,0	36,0	54607	54707
0.2047	$5,200 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	64622	67622
0.2087	$5,300 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	64623	67623
0.2126	$5,400 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	64624	67624
0.2165	$5,500 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	64625	67625
0.2188	$5,558 \mathrm{~mm}$	7/32	6,0	66,0	28,0	20,0	36,0	54608	54708
0.2205	5,600 mm		6,0	66,0	28,0	20,0	36,0	64626	67626
0.2244	5,700 mm		6,0	66,0	28,0	19,0	36,0	64627	67627
0.2283	$5,800 \mathrm{~mm}$		6,0	66,0	28,0	19,0	36,0	64628	67628
								ntinued o	on next page

TOLERANCES (inch)
S. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=\mathrm{h}_{6}$
>. 1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=\mathrm{h}_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON = h_{6}
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$

NON-FERROUS

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.	
$\underset{\text { DC }}{\text { DECIMAL }}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH	SHANK LENGTH LS	UNCOATED	$\underset{\left(\text { TiB }_{2}\right)}{\text { Ti-NAMITE }}$
0.2323	$5,900 \mathrm{~mm}$		6,0	66,0	28,0	19,0	36,0	64629	67629
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	66,0	28,0	19,0	36,0	54609	54709
0.2362	6,000 mm		6,0	66,0	28,0	19,0	36,0	64630	67630
0.2402	6,100 mm		8,0	79,0	34,0	25,0	36,0	64631	67631
0.2441	$6,200 \mathrm{~mm}$		8,0	79,0	34,0	25,0	36,0	64632	67632
0.2480	$6,300 \mathrm{~mm}$		8,0	79,0	34,0	25,0	36,0	64633	67633
0.2500	$6,350 \mathrm{~mm}$	1/4 E \#0	8,0	79,0	34,0	24,0	36,0	54610	54710
0.2520	6,400 mm		8,0	79,0	34,0	24,0	36,0	64634	67634
0.2559	6,500 mm		8,0	79,0	34,0	24,0	36,0	64635	67635
0.2570	$6,528 \mathrm{~mm}$	F	8,0	79,0	34,0	24,0	36,0	54611	54711
0.2598	$6,600 \mathrm{~mm}$		8,0	79,0	34,0	24,0	36,0	64636	67636
0.2638	6,700 mm		8,0	79,0	34,0	24,0	36,0	64637	67637
0.2656	6,746 mm	17/64	8,0	79,0	34,0	24,0	36,0	54612	54712
0.2677	$6,800 \mathrm{~mm}$		8,0	79,0	34,0	24,0	36,0	64638	67638
0.2717	6,900 mm		8,0	79,0	34,0	24,0	36,0	64639	67639
0.2756	7,000 mm		8,0	79,0	34,0	24,0	36,0	64640	67640
0.2795	7,100 mm		8,0	79,0	41,0	30,0	36,0	64641	67641
0.2812	7,142 mm	9/32	8,0	79,0	41,0	30,0	36,0	54613	54713
0.2835	$7,200 \mathrm{~mm}$		8,0	79,0	41,0	30,0	36,0	64642	67642
0.2874	$7,300 \mathrm{~mm}$		8,0	79,0	41,0	30,0	36,0	64643	67643
0.2913	$7,400 \mathrm{~mm}$		8,0	79,0	41,0	30,0	36,0	64644	67644
0.2953	$7,500 \mathrm{~mm}$		8,0	79,0	41,0	30,0	36,0	64645	67645
0.2969	$7,541 \mathrm{~mm}$	19/64	8,0	79,0	41,0	30,0	36,0	54614	54714
0.2992	$7,600 \mathrm{~mm}$		8,0	79,0	41,0	30,0	36,0	64646	67646
0.3031	7,700 mm		8,0	79,0	41,0	29,0	36,0	64647	67647
0.3071	$7,800 \mathrm{~mm}$		8,0	79,0	41,0	29,0	36,0	64648	67648
0.3110	$7,900 \mathrm{~mm}$		8,0	79,0	41,0	29,0	36,0	64649	67649
0.3125	$7,938 \mathrm{~mm}$	5/16	8,0	79,0	41,0	29,0	36,0	54615	54715
0.3150	$8,000 \mathrm{~mm}$		8,0	79,0	41,0	29,0	36,0	64650	67650
0.3189	8,100 mm		10,0	89,0	47,0	35,0	40,0	64651	67651
0.3228	$8,200 \mathrm{~mm}$		10,0	89,0	47,0	35,0	40,0	64652	67652
0.3268	8,300 mm		10,0	89,0	47,0	35,0	40,0	64653	67653
0.3281	8,334 mm	21/64	10,0	89,0	47,0	34,0	40,0	54616	54716
0.3307	$8,400 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	64654	67654
0.3320	$8,433 \mathrm{~mm}$	0	10,0	89,0	47,0	34,0	40,0	54617	54717
0.3346	8,500 mm		10,0	89,0	47,0	34,0	40,0	64655	67655
0.3386	$8,600 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	64656	67656
0.3425	$8,700 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	64657	67657
0.3438	8,733 mm	11/32	10,0	89,0	47,0	34,0	40,0	54618	54718
0.3465	$8,800 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	64658	67658
0.3504	$8,900 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	64659	67659
0.3543	9,000 mm		10,0	89,0	47,0	34,0	40,0	64660	67660
0.3583	$9,100 \mathrm{~mm}$		10,0	89,0	47,0	33,0	40,0	64661	67661
0.3594	9,129 mm	23/64	10,0	89,0	47,0	33,0	40,0	54619	54719
								continued o	on next page

FRACTIONAL \& METRIC

Series 131N

- 3-margin design improves hole stability and size control while providing superior finish, roundness and cylindricity
- Self-stabilizing pyramid point design stabilizes the drill on contact with the workpiece
- Open flute structure efficiently transports chips while maintaining strength at high feed rates
- Sculpted gash allows chips to easily flow away from the drill center
- Recommended for materials ≤ 175 Bhn (≤ 16 HRc)

inch \& mm								EDP NO.	
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	UNCOATED	$\underset{\left(\mathrm{TiB}_{2}\right)}{\text { Ti-NAMIE }}$
0.3622	$9,200 \mathrm{~mm}$		10,0	89,0	47,0	33,0	40,0	64662	67662
0.3661	$9,300 \mathrm{~mm}$		10,0	89,0	47,0	33,0	40,0	64663	67663
0.3680	$9,347 \mathrm{~mm}$	U	10,0	89,0	47,0	33,0	40,0	54620	54720
0.3701	$9,400 \mathrm{~mm}$		10,0	89,0	47,0	33,0	40,0	64664	67664
0.3740	9,500 mm		10,0	89,0	47,0	33,0	40,0	64665	67665
0.3750	9,525 mm	3/8	10,0	89,0	47,0	33,0	40,0	54621	54721
0.3780	9,600 mm		10,0	89,0	47,0	33,0	40,0	64666	67666
0.3819	9,700 mm		10,0	89,0	47,0	32,0	40,0	64667	67667
0.3858	9,800 mm		10,0	89,0	47,0	32,0	40,0	64668	67668
0.3898	9,900 mm		10,0	89,0	47,0	32,0	40,0	64669	67669
0.3906	9,921 mm	25/64	10,0	89,0	47,0	32,0	40,0	54622	54722
0.3937	$10,000 \mathrm{~mm}$		10,0	89,0	47,0	32,0	40,0	64670	67670
0.3976	$10,100 \mathrm{~mm}$		12,0	102,0	55,0	40,0	45,0	64671	67671
0.4016	$10,200 \mathrm{~mm}$		12,0	102,0	55,0	40,0	45,0	64672	67672
0.4055	$10,300 \mathrm{~mm}$		12,0	102,0	55,0	40,0	45,0	64673	67673
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	102,0	55,0	40,0	45,0	54623	54723
0.4095	$10,400 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	64674	67674
0.4134	$10,500 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	64675	67675
0.4173	$10,600 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	64676	67676
0.4213	$10,700 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	64677	67677
0.4219	$10,716 \mathrm{~mm}$	27/64	12,0	102,0	55,0	39,0	45,0	54624	54724
0.4252	$10,800 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	64678	67678
0.4291	$10,900 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	64679	67679
0.4331	$11,000 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	64680	67680
0.4370	$11,100 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	64681	67681
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	102,0	55,0	38,0	45,0	54625	54725
0.4409	$11,200 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	64682	67682
0.4449	$11,300 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	64683	67683
0.4488	$11,400 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	64684	67684
0.4528	$11,500 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	64685	67685
0.4567	$11,600 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	64686	67686
0.4606	$11,700 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	64687	67687
0.4646	$11,800 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	64688	67688
0.4685	$11,900 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	64689	67689
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	102,0	55,0	37,0	45,0	54626	54726
0.4724	$12,000 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	64690	67690
0.4844	$12,304 \mathrm{~mm}$	31/64	14,0	107,0	60,0	41,0	45,0	54627	54727
0.4921	$12,500 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	64691	67691
								continued	on next page

TOLERANCES (inch)
$\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=\mathrm{h}_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=\mathrm{h}_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON = h_{6}
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$

NON-FERROUS

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.	
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL Length OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	UNCOATED	$\underset{\left(\mathrm{TiB}_{2}\right)}{\text { Ti-NAMIE }}$
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	107,0	60,0	41,0	45,0	54628	54728
0.5039	$12,800 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	64692	67692
0.5118	$13,000 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	64693	67693
0.5156	$13,096 \mathrm{~mm}$	33/64	14,0	107,0	60,0	40,0	45,0	54629	54729
0.5315	$13,500 \mathrm{~mm}$		14,0	107,0	60,0	40,0	45,0	64694	67694
0.5433	$13,800 \mathrm{~mm}$		14,0	107,0	60,0	39,0	45,0	64695	67695
0.5512	$14,000 \mathrm{~mm}$		14,0	107,0	60,0	39,0	45,0	64696	67696
0.5625	$14,288 \mathrm{~mm}$	9/16	16,0	115,0	65,0	43,0	48,0	54630	54730
0.5709	$14,500 \mathrm{~mm}$		16,0	115,0	65,0	43,0	48,0	64697	67697
0.5781	$14,684 \mathrm{~mm}$	37/64	16,0	115,0	65,0	43,0	48,0	54631	54731
0.5827	$14,800 \mathrm{~mm}$		16,0	115,0	65,0	43,0	48,0	64698	67698
0.5906	$15,000 \mathrm{~mm}$		16,0	115,0	65,0	42,0	48,0	64699	67699
0.6102	$15,500 \mathrm{~mm}$		16,0	115,0	65,0	42,0	48,0	64700	67700
0.6221	$15,800 \mathrm{~mm}$		16,0	115,0	65,0	41,0	48,0	64701	67701
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	115,0	65,0	41,0	48,0	54632	54732
0.6299	$16,000 \mathrm{~mm}$		16,0	115,0	65,0	41,0	48,0	64702	67702
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	123,0	73,0	47,0	48,0	54633	54733
0.6875	$17,463 \mathrm{~mm}$	11/16	18,0	123,0	73,0	47,0	48,0	54634	54734
0.7500	$19,050 \mathrm{~mm}$	3/4	20,0	131,0	79,0	50,0	50,0	54635	54735

FRACTIONAL \& METRIC
Series 131N

- 3-margin design
improves hole stability
and
provide control while
prining superior
cylindricity
- Self-stabilizing pyramid point design stabilizes the drill on contact with the workpiece
- Open flute structure efficiently transports chips while maintaining strength at high feed rates
- Sculpted gash allows chips to easily flow away from the drill center
- Recommended for materials ≤ 175 Bhn (≤ 16 HRc)

inch \& mm								EDP NO.	
$\underset{\text { DC }}{\text { DECIMAL }}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	UNCOATED	$\underset{\left(\mathrm{TiB}_{2}\right)}{\mathrm{Ti}-\mathrm{NAMIE}^{\star}-\mathrm{B}}$
0.1181	3,000 mm		6,0	66,0	28,0	23,0	36,0	65000	64800
0.1220	3,100 mm		6,0	66,0	28,0	23,0	36,0	65001	64801
0.1250	3,175 mm	1/8	6,0	66,0	28,0	23,0	36,0	55000	54800
0.1260	3,200 mm		6,0	66,0	28,0	23,0	36,0	65002	64802
0.1299	3,300 mm		6,0	66,0	28,0	23,0	36,0	65003	64803
0.1339	$3,400 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	65004	64804
0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	66,0	28,0	23,0	36,0	55001	54801
0.1378	3,500 mm		6,0	66,0	28,0	23,0	36,0	65005	64805
0.1406	3,571 mm	9/64	6,0	66,0	28,0	23,0	36,0	55002	54802
0.1417	3,600 mm		6,0	66,0	28,0	23,0	36,0	65006	64806
0.1457	$3,700 \mathrm{~mm}$		6,0	66,0	28,0	23,0	36,0	65007	64807
0.1496	$3,800 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65008	64808
0.1535	$3,900 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65009	64809
0.1562	$3,967 \mathrm{~mm}$	5/32	6,0	74,0	36,0	29,0	36,0	55003	54803
0.1575	4,000 mm		6,0	74,0	36,0	29,0	36,0	65010	64810
0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	74,0	36,0	29,0	36,0	55004	54804
0.1614	$4,100 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65011	64811
0.1654	4,200 mm		6,0	74,0	36,0	29,0	36,0	65012	64812
0.1693	4,300 mm		6,0	74,0	36,0	29,0	36,0	65013	64813
0.1719	$4,366 \mathrm{~mm}$	11/64	6,0	74,0	36,0	29,0	36,0	55005	54805
0.1732	4,400 mm		6,0	74,0	36,0	29,0	36,0	65014	64814
0.1772	$4,500 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65015	64815
0.1811	$4,600 \mathrm{~mm}$		6,0	74,0	36,0	29,0	36,0	65016	64816
0.1850	$4,699 \mathrm{~mm}$	\#13	6,0	74,0	36,0	29,0	36,0	65017	64817
0.1875	$4,763 \mathrm{~mm}$	3/16	6,0	82,0	44,0	37,0	36,0	55006	54806
0.1890	4,801 mm	\#12	6,0	82,0	44,0	37,0	36,0	65018	64818
0.1929	$4,900 \mathrm{~mm}$		6,0	82,0	44,0	37,0	36,0	65019	64819
0.1969	5,000 mm		6,0	82,0	44,0	36,0	36,0	65020	64820
0.2008	$5,100 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65021	64821
0.2031	5,159 mm	13/64	6,0	82,0	44,0	36,0	36,0	55007	54807
0.2047	$5,200 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65022	64822
0.2087	$5,300 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65023	64823
0.2126	$5,400 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65024	64824
0.2165	$5,500 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65025	64825
0.2188	5,558 mm	7/32	6,0	82,0	44,0	36,0	36,0	55008	54808
0.2205	$5,600 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	65026	64826
0.2244	$5,700 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	65027	64827
0.2283	$5,800 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	65028	64828
0.2323	$5,900 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	65029	64829
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	82,0	44,0	35,0	36,0	55009	54809
0.2362	6,000 mm		6,0	82,0	44,0	35,0	36,0	65030	64830
0.2402	6,100 mm		8,0	91,0	53,0	44,0	36,0	65031	64831
0.2441	$6,200 \mathrm{~mm}$		8,0	91,0	53,0	44,0	36,0	65032	64832
0.2480	6,300 mm		8,0	91,0	53,0	44,0	36,0	65033	64833
								ntinued o	next page

TOLERANCES (inch)
s. 1181 DIAMETER

DC $=+.00008 /+.00047$
DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$

\quad NON-FERROUS
For patent information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

inch\& mm	EDP NO.	CONTINUED

$\underset{\text { DC }}{\text { DECIMAL }}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \end{aligned}$	OVERALL LENGTH OAL	$\begin{aligned} & \text { LLUTE } \\ & \text { LENGTH } \\ & \text { LCF } \end{aligned}$	USABLE LENGTH LU	SHANK LENGTH LS	UNCOATED	$\underset{\left(\mathrm{TiB}_{2}\right)}{\text { Ti-NE }}$
0.2500	$6,350 \mathrm{~mm}$	1/4 E \#0	8,0	91,0	53,0	43,0	36,0	55010	54810
0.2520	$6,400 \mathrm{~mm}$		8,0	91,0	53,0	43,0	36,0	65034	64834
0.2559	$6,500 \mathrm{~mm}$		8,0	91,0	53,0	43,0	36,0	65035	64835
0.2570	6,528 mm	F	8,0	91,0	53,0	43,0	36,0	55011	54811
0.2598	6,600 mm		8,0	91,0	53,0	43,0	36,0	65036	64836
0.2638	$6,700 \mathrm{~mm}$		8,0	91,0	53,0	43,0	36,0	65037	64837
0.2656	6,746 mm	17/64	8,0	91,0	53,0	43,0	36,0	55012	54812
0.2677	6,800 mm		8,0	91,0	53,0	43,0	36,0	65038	64838
0.2717	6,900 mm		8,0	91,0	53,0	43,0	36,0	65039	64839
0.2756	$7,000 \mathrm{~mm}$		8,0	91,0	53,0	42,0	36,0	65040	64840
0.2795	7,100 mm		8,0	91,0	53,0	42,0	36,0	65041	64841
0.2812	7,142 mm	9/32	8,0	91,0	53,0	42,0	36,0	55013	54813
0.2835	7,200 mm		8,0	91,0	53,0	42,0	36,0	65042	64842
0.2874	7,300 mm		8,0	91,0	53,0	42,0	36,0	65043	64843
0.2913	7,400 mm		8,0	91,0	53,0	42,0	36,0	65044	64844
0.2953	7,500 mm		8,0	91,0	53,0	42,0	36,0	65045	64845
0.2969	7,541 mm	19/64	8,0	91,0	53,0	42,0	36,0	55014	54814
0.2992	7,600 mm		8,0	91,0	53,0	42,0	36,0	65046	64846
0.3031	7,700 mm		8,0	91,0	53,0	41,0	36,0	65047	64847
0.3071	7,800 mm		8,0	91,0	53,0	41,0	36,0	65048	64848
0.3110	7,900 mm		8,0	91,0	53,0	41,0	36,0	65049	64849
0.3125	7,938 mm	5/16	8,0	91,0	53,0	41,0	36,0	55015	54815
0.3150	8,000 mm		8,0	91,0	53,0	41,0	36,0	65050	64850
0.3189	8,100 mm		10,0	103,0	61,0	49,0	40,0	65051	64851
0.3228	8,200 mm		10,0	103,0	61,0	49,0	40,0	65052	64852
0.3268	8,300 mm		10,0	103,0	61,0	49,0	40,0	65053	64853
0.3281	8,334 mm	21/64	10,0	103,0	61,0	48,0	40,0	55016	54816
0.3307	$8,400 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	65054	64854
0.3320	$8,433 \mathrm{~mm}$	0	10,0	103,0	61,0	48,0	40,0	55017	54817
0.3346	8,500 mm		10,0	103,0	61,0	48,0	40,0	65055	64855
0.3386	8,600 mm		10,0	103,0	61,0	48,0	40,0	65056	64856
0.3425	8,700 mm		10,0	103,0	61,0	48,0	40,0	65057	64857
0.3438	8,733 mm	11/32	10,0	103,0	61,0	48,0	40,0	55018	54818
0.3465	8,800 mm		10,0	103,0	61,0	48,0	40,0	65058	64858
0.3504	8,900 mm		10,0	103,0	61,0	48,0	40,0	65059	64859
0.3543	9,000 mm		10,0	103,0	61,0	48,0	40,0	65060	64860
0.3583	9,100 mm		10,0	103,0	61,0	47,0	40,0	65061	64861
0.3594	9,129 mm	23/64	10,0	103,0	61,0	47,0	40,0	55019	54819
0.3622	9,200 mm		10,0	103,0	61,0	47,0	40,0	65062	64862
0.3661	9,300 mm		10,0	103,0	61,0	47,0	40,0	65063	64863
0.3680	$9,347 \mathrm{~mm}$	U	10,0	103,0	61,0	47,0	40,0	55020	54820
0.3701	9,400 mm		10,0	103,0	61,0	47,0	40,0	65064	64864
0.3740	$9,500 \mathrm{~mm}$		10,0	103,0	61,0	47,0	40,0	65065	64865
0.3750	9,525 mm	3/8	10,0	103,0	61,0	47,0	40,0	55021	54821
0.3780	9,600 mm		10,0	103,0	61,0	47,0	40,0	65066	64866
0.3819	9,700 mm		10,0	103,0	61,0	46,0	40,0	65067	64867
0.3858	$9,800 \mathrm{~mm}$		10,0	103,0	61,0	46,0	40,0	65068	64868
0.3898	9,900 mm		10,0	103,0	61,0	46,0	40,0	65069	64869
0.3906	9,921 mm	25/64	10,0	103,0	61,0	46,0	40,0	55022	54822
0.3937	$10,000 \mathrm{~mm}$		10,0	103,0	61,0	46,0	40,0	65070	64870
0.3976	$10,100 \mathrm{~mm}$		12,0	118,0	71,0	56,0	45,0	65071	64871
0.4016	10,200 mm		12,0	118,0	71,0	56,0	45,0	65072	64872

FRACTIONAL \& METRIC
Series 131N

- 3-margin design improves hole stability and size control while providing superior finish, roundness and cylindricity
- Self-stabilizing pyramid point design stabilizes the drill on contact with the workpiece
- Open flute structure efficiently transports chips while maintaining strength at high feed rates
- Sculpted gash allows chips to easily flow away from the drill center
- Recommended for materials ≤ 175 Bhn (≤ 16 HRc)

inch \& mm								EDP NO.	
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMEER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \\ & \text { LCF } \end{aligned}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	UNCOATED	$\underset{\left(\mathrm{TiB}_{2}\right)}{\text { Ti-NAMIE }}$
0.4055	10,300 mm		12,0	118,0	71,0	56,0	45,0	65073	64873
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	118,0	71,0	56,0	45,0	55023	54823
0.4095	$10,400 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	65074	64874
0.4134	10,500 mm		12,0	118,0	71,0	55,0	45,0	65075	64875
0.4173	$10,600 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	65076	64876
0.4213	10,700 mm		12,0	118,0	71,0	55,0	45,0	65077	64877
0.4219	10,716 mm	27/64	12,0	118,0	71,0	55,0	45,0	55024	54824
0.4252	10,800 mm		12,0	118,0	71,0	55,0	45,0	65078	64878
0.4291	$10,900 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	65079	64879
0.4331	$11,000 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65080	64880
0.4370	$11,100 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65081	64881
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	118,0	71,0	54,0	45,0	55025	54825
0.4409	$11,200 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65082	64882
0.4449	$11,300 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65083	64883
0.4488	$11,400 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65084	64884
0.4528	$11,500 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65085	64885
0.4567	$11,600 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	65086	64886
0.4606	$11,700 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	65087	64887
0.4646	$11,800 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	65088	64888
0.4685	$11,900 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	65089	64889
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	118,0	71,0	53,0	45,0	55026	54826
0.4724	$12,000 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	65090	64890
0.4844	$12,304 \mathrm{~mm}$	31/64	14,0	124,0	77,0	58,0	45,0	55027	54827
0.4921	$12,500 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	65091	64891
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	124,0	77,0	58,0	45,0	55028	54828
0.5039	$12,800 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	65092	64892
0.5118	$13,000 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	65093	64893
0.5156	$13,096 \mathrm{~mm}$	33/64	14,0	124,0	77,0	57,0	45,0	55029	54829
0.5315	$13,500 \mathrm{~mm}$		14,0	124,0	77,0	57,0	45,0	65094	64894
0.5433	$13,800 \mathrm{~mm}$		14,0	124,0	77,0	56,0	45,0	65095	64895
0.5512	$14,000 \mathrm{~mm}$		14,0	124,0	77,0	56,0	45,0	65096	64896
0.5625	14,288 mm	9/16	16,0	133,0	83,0	61,0	48,0	55030	54830
0.5709	$14,500 \mathrm{~mm}$		16,0	133,0	83,0	61,0	48,0	65097	64897
0.5781	14,684 mm	37/64	16,0	133,0	83,0	61,0	48,0	55031	54831
0.5827	14,800 mm		16,0	133,0	83,0	61,0	48,0	65098	64898
0.5906	$15,000 \mathrm{~mm}$		16,0	133,0	83,0	60,0	48,0	65099	64899
0.6102	$15,500 \mathrm{~mm}$		16,0	133,0	83,0	60,0	48,0	65100	64900
0.6221	15,800 mm		16,0	133,0	83,0	59,0	48,0	65101	64901
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	133,0	83,0	59,0	48,0	55032	54832
0.6299	$16,000 \mathrm{~mm}$		16,0	133,0	83,0	59,0	48,0	65102	64902
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	143,0	93,0	68,0	48,0	55033	54833
0.6875	$17,463 \mathrm{~mm}$	11/16	18,0	143,0	93,0	67,0	48,0	55034	54834
0.7500	19,050 mm	3/4	20,0	153,0	101,0	72,0	50,0	55035	54835

TOLERANCES (inch)
s. 1181 DIAMETER

DC $=+.00008 /+.00047$
DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 diameter
DC $=+0,007 /+0,025$
DCON $=h_{6}$

NON-FERROUS

For patent
information visit www.ksptpatents.com

Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
rpm $=$ Vc $\times 3.82$ / DC
$i p m=\operatorname{Fr} \times \mathrm{rpm}$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

	Series 131N		$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{min}) \end{gathered}$		DC • mm						
	Metric	Hardness			3	6	8	10	12	14	16
	ALUMINUM ALLOYS < 12\% SI 6061, 2024, 7075	$\begin{aligned} & \leq 150 \mathrm{Bhn} \\ & \text { or } \\ & \leq 88 \mathrm{HRb} \end{aligned}$	244	RPM	25851	12926	9694	7755	6463	5540	4847
			(195-293)	Fr	0.133	0.265	0.354	0.442	0.531	0.619	0.708
				Feed (mm/min)	3430	3430	3430	3430	3430	3430	3430
	ALUMINUM ALLOYS $>12 \% \mathrm{SI}$ A356.0, 390.0, 319.0	$\begin{aligned} & \leq 125 \text { Bhn } \\ & \text { or } \\ & \leq 77 \mathrm{HRb} \end{aligned}$	183	RPM	19388	9694	7271	5816	4847	4155	3635
			(146-219)	Fr	0.131	0.262	0.349	0.437	0.524	0.611	0.699
				Feed (mm/min)	2540	2540	2540	2540	2540	2540	2540
	COPPER ALLOYS Alum Bronze, Muntz Brass, Navel Brass	$\begin{aligned} & \leq 175 \mathrm{Bhn} \\ & \text { or } \\ & \leq 16 \mathrm{HRc} \end{aligned}$	168	RPM	17773	8886	6665	5332	4443	3808	3332
			(134-201)	Fr	0.049	0.097	0.130	0.162	0.194	0.227	0.259
				Feed (mm/min)	864	864	864	864	864	864	864
	PLASTICS Acrylic, PVC, Polypropylene		137	RPM	14541	7271	5453	4362	3635	3116	2726
			(110-165)	Fr	0.059	0.119	0.158	0.198	0.238	0.277	0.317
				Feed (mm/min)	864	864	864	864	864	864	864

Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
$\mathrm{rpm}=(\mathrm{Vc} \times 1000) /(\mathrm{DC} \times 3.14)$
$\mathrm{mm} / \mathrm{min}=\mathrm{Fr} \times \mathrm{rpm}$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

SERIES 120
(A) 4-MARGIN CONSTRUCTION

- improves drill stability for better hole finish and size control

SERIES 120 COMPOSITE DRILL
The key features of the 8 Facet Double Angle Series 120 drill design offers application benefits beyond that of other high performance drills in its category. Each feature of this 8 facet design was engineered as a solution towards addressing the issues commonly encountered during Composite drilling. This unique High Performance design successfully creates an accurate hole without splintering or delamination.

- allows coolant to reach the point for improved hole quality and extended tool life
(B) DOUBLE ANGLE POINT
- minimizes workpiece delamination on drill entry and exit
- redistributes loads along multiple cutting edges for improved performance
(C)

NOTCHED POINT

- reduces cutting forces at the drill center for enhanced performance and tool life - manufactured exclusively with Di-NAMITE ${ }^{\circledR}$ coating for even wear, extended tool life, and improved finishes

PERFORMANCE. PRECISION. PASSION. SERIES 120 COMPOSITE DRILL

PERFORMANCE.

- 4-margin design stabilized the drill for greater hole accuracy and improved surface finish in final hole.
- Minimized delamination at hole entry/exit.
- Manufactured exclusively with Di-NAMITE® ${ }^{\text {c }}$ coating for even wear, extended tool life and improved finishes.

PRECISION.

A test was conducted of our CFRP drill to determine the necessity of coating when drilling Carbon Fiber material. Fifty holes were drilled using a special size .190" CFRP drill. The tool's design produces acceptable quality holes; but as shown in the photos, early edge wear on the uncoated drill resulted in holes with frayed edges. The diamond coated drill produced all 50 holes with little to no fraying and edge wear was 38% less than the uncoated drills.
The geometry of the 8 Facet drill with the Di-NAMITE ${ }^{\oplus}$ coating is a necessity for additional tool life and productivity when manufacturing Carbon Fiber material.

PASSION.

- The compound angle creates 4 cutting edges along the drill point.
- Distinct double angle prevents abrasiveness of the Composite from localizing along the point and diminishing tool life.

FRACTIONAL \& METRIC

Solid Carbide Tools
$\underbrace{\infty}_{\text {Common }} \underbrace{5 \pi \pi \sqrt{0}}_{\text {Reach }}$

Point Angle

- 4-margin design stabilizes the drill for greater hole accuracy and improved surface finish
- Notched point reduces thrust force over conventional designs
- 8 facet point reduces fiber breakout and delamination on exit
- 90 degree secondary chamfer angle improves hole entrance and exit quality

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	$\begin{aligned} & \text { SHANK } \\ & \text { LENGTH } \end{aligned}$ LS	Di-NAMITE (Diamond)
0.0980	2,489 mm	\#40	1/8	2	9/16	7/16	1-1/4	50000
0.1063	2,700 mm		6,0	63,0	20,0	16,0	32,0	50001
0.1181	3,000 mm		6,0	63,0	20,0	16,0	36,0	50002
0.1250	3,175 mm	1/8	1/4	2-1/2	3/4	9/16	1-7/16	50003
0.1260	3,200 mm		6,0	63,0	20,0	15,0	36,0	50004
0.1285	3,264 mm	\#30	1/4	2-1/2	3/4	9/16	1-7/16	50005
0.1405	3,569 mm	\#28	1/4	2-1/2	3/4	9/16	1-7/16	50006
0.1570	3,988 mm	\#22	1/4	2-5/8	7/8	5/8	1-7/16	50007
0.1590	4,039 mm	\#21	1/4	2-5/8	7/8	5/8	1-7/16	50008
0.1614	4,100 mm		6,0	66,0	24,0	18,0	36,0	50009
0.1660	4,216 mm	\#19	1/4	2-5/8	7/8	5/8	1-7/16	50010
0.1719	4,366 mm	11/64	1/4	2-5/8	7/8	5/8	1-7/16	50011
0.1875	4,763 mm	3/16	1/4	2-5/8	1	23/32	1-7/16	50012
0.1910	4,851 mm	\#11	1/4	2-5/8	1	23/32	1-7/16	50013
0.1990	5,055 mm	\#8	1/4	2-5/8	1	23/32	1-7/16	50014
0.2010	5,105 mm	\#7	1/4	2-5/8	1	23/32	1-7/16	50015
0.2210	5,613 mm	\#2	1/4	2-5/8	1	21/32	1-7/16	50016
0.2362	6,000 mm		6,0	66,0	28,0	19,0	36,0	50017
0.2500	6,350 mm	1/4 E \#0	1/4	3-1/8	1-5/16	15/16	1-7/16	50018
0.2510	6,380 mm		5/16	3-1/8	1-5/16	15/16	1-7/16	50019
0.2570	6,528 mm	F	5/16	3-1/8	1-5/16	15/16	1-7/16	50020
0.2720	6,909 mm	I	5/16	3-1/8	1-5/16	29/32	1-7/16	50021
0.2770	7,036 mm	J	5/16	3-1/8	1-5/16	29/32	1-7/16	50022
0.2810	7,137 mm	K	5/16	3-1/8	1-9/16	1-9/64	1-7/16	50023
0.3125	7,938 mm	5/16	5/16	3-1/8	1-9/16	1-3/32	1-7/16	50024
0.3150	8,000 mm		8,0	79,0	41,0	29,0	36,0	50025
0.3750	9,525 mm	3/8	3/8	3-1/2	1-27/32	1-9/32	1-9/16	50026
0.3770	9,576 mm	V	1/2	3-1/2	1-27/32	1-9/32	1-9/16	50027
0.3937	$10,000 \mathrm{~mm}$		10,0	89,0	47,0	32,0	40,0	50028
0.4375	$11,113 \mathrm{~mm}$	7/16	1/2	4-1/16	2-3/16	1-17/32	1-9/16	50029
0.4724	$12,000 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	50030
0.5000	$12,700 \mathrm{~mm}$	1/2	1/2	4-1/4	2-5/16	1-9/16	1-3/4	50031

TOLERANCES (inch)
DC $=+.0000 /+.0005$ DCON $=h_{6}$

TOLERANCES (mm)
DC $=+0,000 /+0,013$ DCON $=\mathrm{h}_{6}$

NON-FERROUS

For patent information visit www.ksptpatents.com

Solid Carbide Tools

rpm $=\mathrm{Vc} \times 3.82 / \mathrm{DC}$
ipm $=\mathrm{Fr} \times \mathrm{rpm}$
adjust speed and / or feed based on resin type and / or fiber structure
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

		$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{min}) \end{gathered}$		DC • mm						
	Metric			2.5	3	4	6	8	10	12
N	CFRP, AFRP (Carbon Fiber, Aramid Fiber)	100	RPM	12722	10602	7951	5301	3976	3181	2650
		(80-120)	Fr	0.012	0.014	0.019	0.028	0.038	0.047	0.057
			Feed (mm/min)	150	150	150	150	150	150	150
	GFRP (Fiberglass)	75	RPM	9542	7951	5963	3976	2982	2385	1988
		(65-90)	Fr	0.012	0.014	0.019	0.029	0.039	0.048	0.058
			Feed (mm/min)	115	115	115	115	115	115	115
	CARBON, GRAPHITE	120	RPM	15266	12722	9542	6361	4771	3817	3181
		(96-144)	Fr	0.015	0.018	0.025	0.037	0.049	0.062	0.074
			Feed (mm/min)	235	235	235	235	235	235	235

rpm $=(\mathrm{Vc} \times 1000) /(\mathrm{DC} \times 3.14)$
$\mathrm{mm} / \mathrm{min}=\mathrm{Fr} \times \mathrm{rpm}$
adjust speed and / or feed based on resin type and / or fiber structure
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

SERIES 135

The key features designed into the Hi-PerCarb ${ }^{\circledR}$ Series 135 Drill allow the product to offer application benefits not only beyond that of standard carbide drills, but also other High Performance drills. Each feature of the Hi-PerCarb ${ }^{\circledR}$ Series 135 Drill was uniquely engineered as a solution towards addressing the issues commonly encountered during high production drilling.
(A) $\frac{\text { HIGH PERFORMANCE FLUTE DESIGN }}{\bullet \text { efficiently transports chips }}$

- increases strength for aggressive drilling

Ti-NAMITE®-A COATING

- improves resistance to heat and wear
- enhances tool life
(B1) 4-MARGIN DESIGN
- improves accuracy and surface finish
(B2) • increases stability and rigidity
C SECONDARY FLUTE
- improves coolant flow to point
- reduces friction along drill body
- assists in fine swarf evacuation
(D) SPECIALIZED 145° NOTCHED POINT
- improves chip control
- decreases drill thrust and deflection

ENGINEERED EDGE PROTECTION

- improves edge strength
- reduces edge fatigue
- allows increased feed rates

PERFORMANCE. PRECISION. PASSION. HI-PERCARB ${ }^{\circledR}$ SERIES 135 DRILLS

Solid Carbide Tools

PERFORMANCE.

MACHINING ENVIRONMENT:

Haas VM-3 with 9\% Water Soluble Oil Flood Coolant 5/16" (.3125) diameter hole:
4140 application - $.650^{\prime \prime}$ deep
6AI-4V application - 1.125" deep

The 4-margin design gives the Hi-PerCarb® Series 135 Drill a burnishing effect and the flute form effectively controls and transports chips allowing the drill to offer superior surface finishes and hole size in high production environments saving cycle time by often avoiding the need for reaming in many applications.

PRECISION.

The stability of the 4-margin design and penetration capability of the point geometry allow the Hi-PerCarb ${ }^{\circledR}$ Series 135 Drill to address demanding applications that would normally require reduced operating parameters or a two step process.

PASSION.

The secondary flute provides a channel for cooling capabilities normally not found in external coolant drills, this combined with the Ti-NAMITE ${ }^{\text {- A A tool coating and the high strength edge design results in increased operating }}$ parameters with additional tool life.

ACTUAL CUSTOMER APPLICATION USING A 6MM DRILL IN 17-4 PH STAINLESS STEEL

	COMPETITOR	$\begin{aligned} & \text { HI-PERCARB }{ }^{\circledR} \\ & \text { SERIES } 135 \end{aligned}$
NUMBER OF PARTS TO PRODUCE	50000	50000
SURFACE FEET PER MINUTE (SFM)	74	124
SPEED IN REVOLUTIONS PER MINUTE (RPM)	1200	2000
FEED IN INCHES PER MINUTE (IPM)	3.6	10
NUMBER OF PARTS PRODUCED PER TOOL	140	500
DEPTH OF HOLE	0.6800	0.6800
NUMBER OF NEW TOOLS REQUIRED TO COMPLETE JOB	358	100
TOTAL HOURS OF MACHINING TIME	157	57
TOTAL MACHINING COST	\$10,231.48	\$3,683.33
TOOL CHANGE COST	\$1,939.17	\$541.67
TOTAL COST	\$39,017.07	\$8,460.00
COST PER PART	\$0.78	\$0.17
MATERIAL REMOVAL RATE (IN³ / MIN) - DRILLING	0.16	0.44
CUTTING TIME PER PART - MINUTES	0.19	0.07
SAVINGS PER PART - DOLLARS	0	\$0.61
TOTAL COST SAVINGS / JOB - PERCENTAGE	0	78.32 \%
TOTAL COST SAVINGS / JOB - DOLLARS	0	\$30,557.07

\author{

- TOOL COST
 - MACHINING COST
 - COOLANT COST
 ■ MACHINE DOWNTIME COST
 - TOOL CHANGE COST
 - ADMINISTRATIVE COST
}

■ TOOL COST REDUCED BY
■ MACHINING COST REDUCED BY - COOLANT COST REDUCED BY

- MACHINE DOWNTIME COST REDUCED BY TOOL CHANGE COST REDUCED BY - ADMINISTRATIVE COST REDUCED BY

Using 100 tools per job compared to 358 means less inventory and fewer purchase orders to issue resulting in improved administrative cost and reduced tooling cost per job.

- Increasing the feed by 278% has decreased the total hours of machine time by 100 hours gaining manufacturing capacity; this factored with the hourly shop rate has resulted in the largest portion of the savings.
■ With a tool life of 500 parts compared to 140 parts or a 357% improvement in tool life equates to less time dedicated to changing tools to keep the job running.
- Increasing the material removal rate by . 28 cubic inches or 275% requires less time in the cut and a reduced use of coolant.

FRACTIONAL \& METRIC

FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggressive drilling
- Specialized self-
centering notched point
eliminates the need for
spot drilling decreasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials ≤ 50 HRc
(≤ 475 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \end{aligned}$ LCF	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { IS } \end{gathered}$	Ti-NAMITE-A (AITiN)
0.0156	0,396 mm	1/64	1/8	1-1/2	1/8	7/64	1	51752*
0.0312	0,792 mm	1/32	1/8	1-1/2	1/4	13/64	1	51269*
0.0469	1,191 mm	3/64	1/8	1-1/2	3/8	5/16	1	51270*
0.0492	1,250 mm		3,0	38,0	9,5	8,0	25,0	64500*
0.0571	$1,450 \mathrm{~mm}$		3,0	38,0	9,5	7,0	25,0	64501*
0.0595	1,511 mm	\#53	1/8	1-1/2	3/8	9/32	1	64502*
0.0625	1,588 mm	1/16	1/8	2	7/16	11/32	1-1/4	51271*
0.0630	1,600 mm		3,0	50,0	11,0	9,0	32,0	64503*
0.0689	1,750 mm		3,0	50,0	11,0	8,0	32,0	64504*
0.0700	1,778 mm	\#50	1/8	2	7/16	21/64	1-1/4	64505*
0.0781	1,984 mm	5/64	1/8	2	1/2	25/64	1-1/4	51272*
0.0785	1,994 mm	\#47	1/8	2	1/2	25/64	1-1/4	64506*
0.0807	2,050 mm		3,0	50,0	12,0	9,0	32,0	64507*
0.0810	2,057 mm	\#46	1/8	2	1/2	3/8	1-1/4	64508*
0.0890	2,261 mm	\#43	1/8	2	1/2	3/8	1-1/4	64509*
0.0935	2,375 mm	\#42	1/8	2	1/2	23/64	1-1/4	64510*
0.0938	2,383 mm	3/32	1/8	2	1/2	23/64	1-1/4	51273
0.0980	2,489 mm	\#40	1/8	2	9/16	27/64	1-1/4	51274
0.0984	2,500 mm		3,0	50,0	14,0	10,0	32,0	64511
0.0995	2,527 mm	\#39	1/8	2	9/16	27/64	1-1/4	51753
0.1015	2,578 mm	\#38	1/8	2	9/16	27/64	1-1/4	51754
0.1040	2,642 mm	\#37	1/8	2	9/16	13/32	1-1/4	51755
0.1065	2,705 mm	\#36	1/8	2	9/16	13/32	1-1/4	51756
0.1094	2,779 mm	7/64	1/8	2	5/8	15/32	1-1/4	51275
0.1100	2,794 mm	\#35	1/8	2	5/8	15/32	1-1/4	51276
0.1110	2,819 mm	\#34	1/8	2	5/8	15/32	1-1/4	51277
0.1130	2,870 mm	\#33	1/8	2	5/8	29/64	1-1/4	51757
0.1142	2,900 mm		3,0	50,0	16,0	12,0	32,0	64512
0.1160	2,946 mm	\#32	1/8	2	5/8	29/64	1-1/4	51758
0.1181	3,000 mm		6,0	62,0	20,0	16,0	36,0	63155
0.1200	$3,048 \mathrm{~mm}$	\#31	1/8	2	5/8	29/64	1-1/4	51759
0.1220	$3,100 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	63741
0.1250	3,175 mm	1/8	1/4	2-1/2	3/4	9/16	1-7/16	51330
0.1260	$3,200 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	63156
0.1285	3,264 mm	\#30	1/4	2-1/2	3/4	9/16	1-7/16	51278
0.1299	3,300 mm		6,0	62,0	20,0	15,0	36,0	63157
0.1339	$3,400 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	63158
0.1360	$3,454 \mathrm{~mm}$	\#29	1/4	2-1/2	3/4	9/16	$\begin{array}{l\|l} 1-7 / 16 & 51331 \end{array}$ continued on next page	
*Single Margin								

TOLERANCES (inch)
s. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>. 1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS

STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	uSABLE LENGTH LU	SHANK LENGTH LS	Ti-NAMITE-A (AITiN)
0.1378	$3,500 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	63159
0.1405	3,569 mm	\#28	1/4	2-1/2	3/4	35/64	1-7/16	51760
0.1406	$3,571 \mathrm{~mm}$	9/64	1/4	2-1/2	3/4	9/16	1-7/16	51332
0.1417	$3,600 \mathrm{~mm}$		6,0	62,0	20,0	15,0	36,0	63160
0.1440	$3,658 \mathrm{~mm}$	\#27	1/4	2-1/2	3/4	35/64	1-7/16	51761
0.1457	$3,700 \mathrm{~mm}$		6,0	62,0	20,0	14,0	36,0	63161
0.1470	$3,734 \mathrm{~mm}$	\#26	1/4	2-1/2	3/4	17/32	1-7/16	51762
0.1495	3,797 mm	\#25	1/4	2-5/8	7/8	21/32	1-7/16	51333
0.1496	$3,800 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	63742
0.1520	$3,861 \mathrm{~mm}$	\#24	1/4	2-5/8	7/8	21/32	1-7/16	51763
0.1535	$3,900 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	63743
0.1540	$3,912 \mathrm{~mm}$	\#23	1/4	2-5/8	7/8	21/32	1-7/16	51764
0.1562	$3,967 \mathrm{~mm}$	5/32	1/4	2-5/8	7/8	41/64	1-7/16	51334
0.1570	$3,988 \mathrm{~mm}$	\#22	1/4	2-5/8	7/8	41/64	1-7/16	51765
0.1575	$4,000 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	63162
0.1590	$4,039 \mathrm{~mm}$	\#21	1/4	2-5/8	7/8	41/64	1-7/16	51335
0.1610	$4,089 \mathrm{~mm}$	\#20	1/4	2-5/8	7/8	5/8	1-7/16	51279
0.1614	$4,100 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	63744
0.1654	$4,200 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	63163
0.1660	$4,216 \mathrm{~mm}$	\#19	1/4	2-5/8	7/8	5/8	1-7/16	51766
0.1693	$4,300 \mathrm{~mm}$		6,0	66,0	24,0	18,0	36,0	63164
0.1695	$4,305 \mathrm{~mm}$	\#18	1/4	2-5/8	7/8	5/8	1-7/16	51767
0.1719	$4,366 \mathrm{~mm}$	11/64	1/4	2-5/8	7/8	39/64	1-7/16	51336
0.1730	4,394 mm	\#17	1/4	2-5/8	7/8	5/8	1-7/16	51768
0.1732	$4,400 \mathrm{~mm}$		6,0	66,0	24,0	17,0	36,0	63745
0.1770	$4,496 \mathrm{~mm}$	\#16	1/4	2-5/8	7/8	39/64	1-7/16	51769
0.1772	$4,500 \mathrm{~mm}$		6,0	66,0	24,0	17,0	36,0	63165
0.1800	$4,572 \mathrm{~mm}$	\#15	1/4	2-5/8	7/8	39/64	1-7/16	51770
0.1811	$4,600 \mathrm{~mm}$		6,0	66,0	24,0	17,0	36,0	63166
0.1820	$4,623 \mathrm{~mm}$	\#14	1/4	2-5/8	7/8	39/64	1-7/16	51771
0.1850	$4,699 \mathrm{~mm}$	\#13	1/4	2-5/8	7/8	39/64	1-7/16	51772
0.1850	$4,699 \mathrm{~mm}$	\#13	6,0	66,0	24,0	17,0	36,0	63746
0.1875	$4,763 \mathrm{~mm}$	3/16	1/4	2-5/8	1	23/32	1-7/16	51337
0.1890	$4,801 \mathrm{~mm}$	\#12	1/4	2-5/8	1	23/32	1-7/16	51773
0.1890	$4,801 \mathrm{~mm}$	\#12	6,0	66,0	28,0	21,0	36,0	63167
0.1910	$4,851 \mathrm{~mm}$	\#11	1/4	2-5/8	1	23/32	1-7/16	51774
0.1929	$4,900 \mathrm{~mm}$		6,0	66,0	28,0	21,0	36,0	63747
0.1935	$4,915 \mathrm{~mm}$	\#10	1/4	2-5/8	1	23/32	1-7/16	51775
0.1960	$4,978 \mathrm{~mm}$	\#9	1/4	2-5/8	1	23/32	1-7/16	51776
0.1969	$5,000 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	63168
0.1990	$5,055 \mathrm{~mm}$	\#8	1/4	2-5/8	1	45/64	1-7/16	51777
0.2008	$5,100 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	63748
0.2010	$5,105 \mathrm{~mm}$	\#7	1/4	2-5/8	1	45/64	1-7/16	51338
0.2031	$5,159 \mathrm{~mm}$	13/64	1/4	2-5/8	1	45/64	1-7/16	51339
0.2040	$5,182 \mathrm{~mm}$	\#6	1/4	2-5/8	1	45/64	1-7/16	51778
0.2047	$5,200 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	63749
							continue	on next page

FRACTIONAL \& METRIC

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggressivive drilling
- Specialized self-
centering notched point
eliminates she eneed for
spot drilling decerasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge fatigue allowing for
increased feed ares
- Recommended for
materials ≤ 50 HRc
(≤ 475 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$ LCF	$\begin{aligned} & \text { USABLE } \\ & \text { LENGTH } \\ & \text { LU } \end{aligned}$	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$ LS	Ti-NAMITE-A (AITiN)
0.2055	5,220 mm	\#5	1/4	2-5/8	1	45/64	1-7/16	51779
0.2067	$5,250 \mathrm{~mm}$		6,0	66,0	28,0	20,0	36,0	63169
0.2087	5,300 mm		6,0	66,0	28,0	20,0	36,0	63170
0.2090	5,309 mm	\#4	1/4	2-5/8	1	11/16	1-7/16	51780
0.2126	5,400 mm		6,0	66,0	28,0	20,0	36,0	63750
0.2130	5,410 mm	\#3	1/4	2-5/8	1	11/16	1-7/16	51340
0.2165	5,500 mm		6,0	66,0	28,0	20,0	36,0	63171
0.2188	5,558 mm	7/32	1/4	2-5/8	1	43/64	1-7/16	51341
0.2205	5,600 mm		6,0	66,0	28,0	20,0	36,0	63751
0.2210	5,613 mm	\#2	1/4	2-5/8	1	11/16	1-7/16	51781
0.2244	5,700 mm		6,0	66,0	28,0	19,0	36,0	63752
0.2280	5,791 mm	\#1	1/4	2-5/8	1	21/32	1-7/16	51782
0.2283	5,800 mm		6,0	66,0	28,0	19,0	36,0	63172
0.2323	5,900 mm		6,0	66,0	28,0	19,0	36,0	63753
0.2340	5,944 mm	A	1/4	2-5/8	1	21/32	1-7/16	51601
0.2344	5,954 mm	15/64	1/4	2-5/8	1	21/32	1-7/16	51342
0.2362	6,000 mm		6,0	66,0	28,0	19,0	36,0	63173
0.2380	6,045 mm	B	1/4	3-1/8	1-5/16	31/32	1-7/16	51602
0.2402	6,100 mm		8,0	79,0	34,0	25,0	36,0	63754
0.2420	6,147 mm	C	1/4	3-1/8	1-5/16	61/64	1-7/16	51603
0.2441	6,200 mm		8,0	79,0	34,0	25,0	36,0	63755
0.2460	6,248 mm	D	1/4	3-1/8	1-5/16	61/64	1-7/16	51604
0.2461	6,250 mm		8,0	79,0	34,0	25,0	36,0	63174
0.2480	6,300 mm		8,0	79,0	34,0	25,0	36,0	63756
0.2500	6,350 mm	1/4 E \#0	1/4	3-1/8	1-5/16	15/16	1-7/16	51343
0.2520	6,400 mm		8,0	79,0	34,0	24,0	36,0	63175
0.2559	6,500 mm		8,0	79,0	34,0	24,0	36,0	63213
0.2570	6,528 mm	F	5/16	3-1/8	1-5/16	59/64	1-7/16	51344
0.2598	6,600 mm		8,0	79,0	34,0	24,0	36,0	63757
0.2610	6,629 mm	G	5/16	3-1/8	1-5/16	59/64	1-7/16	51606
0.2638	6,700 mm		8,0	79,0	34,0	24,0	36,0	63758
0.2656	6,746 mm	17/64	5/16	3-1/8	1-5/16	59/64	1-7/16	51345
0.2660	6,756 mm	H	5/16	3-1/8	1-5/16	59/64	1-7/16	51607
0.2677	6,800 mm		8,0	79,0	34,0	24,0	36,0	63176
0.2717	6,900 mm		8,0	79,0	34,0	24,0	36,0	63759
0.2720	6,909 mm	1	5/16	3-1/8	1-5/16	29/32	1-7/16	51346
0.2756	7,000 mm		8,0	79,0	34,0	24,0	36,0	63177
0.2770	7,036 mm	J	5/16	3-1/8	1-5/16	29/32	1-7/16	51608
							continued	on next page

TOLERANCES (inch)
s. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>. 1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS

STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

HIGH PERFORMANCE CARBIDE DRILLS

FRACTIONAL\& METRIC SERIES

inch \& mm								EDP NO.
$\begin{gathered} \text { DECIMAL } \\ \text { DC } \end{gathered}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	Ti-NAMITE-A (AITiN)
0.2795	7,100 mm		8,0	79,0	41,0	30,0	36,0	63760
0.2810	7,137 mm	K	5/16	3-1/8	1-9/16	1-9/64	1-7/16	51609
0.2812	7,142 mm	9/32	5/16	3-1/8	1-9/16	1-9/64	1-7/16	51347
0.2835	7,200 mm		8,0	79,0	41,0	30,0	36,0	63761
0.2854	7,250 mm		8,0	79,0	41,0	30,0	36,0	63178
0.2874	7,300 mm		8,0	79,0	41,0	30,0	36,0	63762
0.2900	7,366 mm	L	5/16	3-1/8	1-9/16	1-1/8	1-7/16	51610
0.2913	7,400 mm		8,0	79,0	41,0	30,0	36,0	63763
0.2950	7,493 mm	M	5/16	3-1/8	1-9/16	1-1/8	1-7/16	51611
0.2953	7,500 mm		8,0	79,0	41,0	30,0	36,0	63179
0.2969	7,541 mm	19/64	5/16	3-1/8	1-9/16	1-7/64	1-7/16	51348
0.2992	7,600 mm		8,0	79,0	41,0	30,0	36,0	63764
0.3020	7,671 mm	N	5/16	3-1/8	1-9/16	1-7/64	1-7/16	51612
0.3031	7,700 mm		8,0	79,0	41,0	29,0	36,0	63765
0.3071	7,800 mm		8,0	79,0	41,0	29,0	36,0	63180
0.3110	7,900 mm		8,0	79,0	41,0	29,0	36,0	63766
0.3125	7,938 mm	5/16	5/16	3-1/8	1-9/16	1-3/32	1-7/16	51349
0.3150	$8,000 \mathrm{~mm}$		8,0	79,0	41,0	29,0	36,0	63181
0.3160	$8,026 \mathrm{~mm}$	0	3/8	3-1/2	1-27/32	1-3/8	1-9/16	51613
0.3189	$8,100 \mathrm{~mm}$		10,0	89,0	47,0	35,0	40,0	63767
0.3228	8,200 mm		10,0	89,0	47,0	35,0	40,0	63768
0.3230	8,204 mm	P	3/8	3-1/2	1-27/32	1-23/64	1-9/16	51614
0.3268	8,300 mm		10,0	89,0	47,0	35,0	40,0	63769
0.3281	8,334 mm	21/64	3/8	3-1/2	1-27/32	1-23/64	1-9/16	51350
0.3307	$8,400 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	63182
0.3320	$8,433 \mathrm{~mm}$	0	3/8	3-1/2	1-27/32	1-11/32	1-9/16	51351
0.3346	$8,500 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	63183
0.3386	$8,600 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	63770
0.3390	$8,611 \mathrm{~mm}$	R	3/8	3-1/2	1-27/32	1-11/32	1-9/16	51615
0.3425	8,700 mm		10,0	89,0	47,0	34,0	40,0	63771
0.3438	8,733 mm	11/32	3/8	3-1/2	1-27/32	1-21/64	1-9/16	51352
0.3465	8,800 mm		10,0	89,0	47,0	34,0	40,0	63184
0.3480	$8,839 \mathrm{~mm}$	S	3/8	3-1/2	1-27/32	1-21/64	1-9/16	51616
0.3504	$8,900 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	63772
0.3543	$9,000 \mathrm{~mm}$		10,0	89,0	47,0	34,0	40,0	63185
0.3580	9,093 mm	T	3/8	3-1/2	1-27/32	1-5/16	1-9/16	51617
0.3583	$9,100 \mathrm{~mm}$		10,0	89,0	47,0	33,0	40,0	63773
0.3594	9,129 mm	23/64	3/8	3-1/2	1-27/32	1-21/64	1-9/16	51353
0.3622	9,200 mm		10,0	89,0	47,0	33,0	40,0	63774
0.3642	$9,250 \mathrm{~mm}$		10,0	89,0	47,0	33,0	40,0	63186
0.3661	9,300 mm		10,0	89,0	47,0	33,0	40,0	63775
0.3680	9,347 mm	U	3/8	3-1/2	1-27/32	1-19/64	1-9/16	51354
0.3701	$9,400 \mathrm{~mm}$		10,0	89,0	47,0	33,0	40,0	63776
0.3740	9,500 mm		10,0	89,0	47,0	33,0	40,0	63187
							continu	on next page

FRACTIONAL \& METRIC

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
agrasssive drilling
- Specialized self-
centering notched point
eliminates the eneed for
spot drilling decereasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge fatigue ellowing for
increased feed artes
- Recommended for
materials ≤ 50 HRc
(≤ 475 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	flute LENGTH LCF	uSABLE LENGTH LU	SHANK LENGTH LS	Ti-NAMITE-A (AITiN)
0.3750	9,525 mm	3/8	3/8	3-1/2	1-27/32	1-9/32	1-9/16	51355
0.3770	9,576 mm	V	1/2	3-1/2	1-27/32	1-9/32	1-9/16	51618
0.3780	9,600 mm		10,0	89,0	47,0	33,0	40,0	63777
0.3819	$9,700 \mathrm{~mm}$		10,0	89,0	47,0	32,0	40,0	63778
0.3858	$9,800 \mathrm{~mm}$		10,0	89,0	47,0	32,0	40,0	63779
0.3860	$9,804 \mathrm{~mm}$	W	1/2	3-1/2	1-27/32	1-17/64	1-9/16	51619
0.4095	$10,400 \mathrm{~mm}$		10,0	89,0	47,0	32,0	40,0	63780
0.4130	$10,490 \mathrm{~mm}$	Z	1/2	3-1/2	1-27/32	1-17/64	1-9/16	51356
0.4134	$10,500 \mathrm{~mm}$		10,0	89,0	47,0	32,0	40,0	63188
0.4173	$10,600 \mathrm{~mm}$		1/2	4-1/16	2-3/16	1-19/32	1-49/64	51620
0.4213	10,700 mm		12,0	102,0	55,0	40,0	45,0	63781
0.4219	10,716 mm	27/64	12,0	102,0	55,0	40,0	45,0	63189
0.4252	10,800 mm		1/2	4-1/16	2-3/16	1-19/32	1-49/64	51621
0.4291	$10,900 \mathrm{~mm}$		12,0	102,0	55,0	40,0	45,0	63782
0.4331	$11,000 \mathrm{~mm}$		1/2	4-1/16	2-3/16	1-37/64	1-49/64	51357
0.4370	11,100 mm		12,0	102,0	55,0	39,0	45,0	63783
0.4375	11,113 mm	7/16	1/2	4-1/16	2-3/16	1-37/64	1-49/64	51622
0.4409	$11,200 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	63190
0.4429	$11,250 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	63784
0.4449	$11,300 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	63785
0.4488	$11,400 \mathrm{~mm}$		1/2	4-1/16	2-3/16	1-9/16	1-49/64	51358
0.4252	10,800 mm		12,0	102,0	55,0	39,0	45,0	63191
0.4291	$10,900 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	63786
0.4331	$11,0 \mathrm{~mm}$		12,0	102,0	55,0	39,0	45,0	63192
0.4331	$11,000 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	63787
0.4370	$11,100 \mathrm{~mm}$		1/2	4-1/16	2-3/16	1-17/32	1-49/64	51359
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	102,0	55,0	38,0	45,0	63788
0.4409	$11,200 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	63193
0.4429	$11,250 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	63789
0.4449	$11,300 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	63790
0.4488	$11,400 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	63194
0.4531	$11,509 \mathrm{~mm}$	29/64	1/2	4-1/16	2-3/16	1-33/64	1-49/64	51360
0.4567	$11,600 \mathrm{~mm}$		12,0	102,0	55,0	38,0	45,0	63791
0.4606	$11,700 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	63792
0.4646	$11,800 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	63793
0.4685	$11,900 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	63794
0.4688	$11,908 \mathrm{~mm}$	15/32	1/2	4-1/16	2-3/16	1-31/64	1-49/64	51361
0.4724	$12,000 \mathrm{~mm}$		12,0	102,0	55,0	37,0	45,0	63195
							continued	on next page

TOLERANCES (inch)
$\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>. 1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS

STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

HIGH PERFORMANCE CARBIDE DRILLS

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.
$\begin{gathered} \text { DECIMAL } \\ \text { DC } \end{gathered}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK diameter DCON	OVERALL LENGTH OAL	$\underset{\text { LENGTH }}{\text { FLUTE }}$ LCF	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	Ti-NAMITE-A (AITiN)
0.4844	12,304 mm	31/64	1/2	4-1/4	2-5/16	1-19/32	1-49/64	51362
0.4921	$12,500 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	63196
0.5000	$12,700 \mathrm{~mm}$	1/2	1/2	4-1/4	2-5/16	1-9/16	1-49/64	51363
0.5039	$12,800 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	63197
0.5118	$13,000 \mathrm{~mm}$		14,0	107,0	60,0	41,0	45,0	63198
0.5156	13,096 mm	33/64	5/8	4-1/4	2-5/16	1-35/64	1-49/64	51364
0.5312	13,492 mm	17/32	5/8	4-1/4	2-5/16	1-33/64	1-49/64	51365
0.5315	13,500 mm		14,0	107,0	60,0	40,0	45,0	63199
0.5469	$13,8 \mathrm{~mm}$	35/64	5/8	4-1/4	2-5/16	1-1/2	1-49/64	51783
0.5469	13,891 mm	35/64	14,0	107,0	60,0	39,0	45,0	63200
0.5512	$14,000 \mathrm{~mm}$		5/8	4-9/16	2-1/2	1-21/32	1-57/64	51366
0.5625	14,288 mm	9/16	16,0	115,0	65,0	43,0	48,0	63201
0.5781	14,684 mm	37/64	5/8	4-9/16	2-1/2	1-41/64	1-57/64	51367
0.5906	15,000 mm		16,0	115,0	65,0	42,0	48,0	63202
0.5938	15,083 mm	19/32	5/8	4-9/16	2-1/2	1-39/64	1-57/64	51784
0.6094	15,479 mm	39/64	5/8	4-9/16	2-1/2	1-19/32	1-57/64	51785
0.6102	$15,500 \mathrm{~mm}$		16,0	115,0	65,0	42,0	48,0	63203
0.6250	$15,875 \mathrm{~mm}$	5/8	5/8	4-9/16	2-1/2	1-9/16	1-57/64	51368
0.6299	$16,000 \mathrm{~mm}$		16,0	115,0	65,0	41,0	48,0	63204
0.6406	$16,271 \mathrm{~mm}$	41/64	3/4	4-7/8	2-3/4	1-51/64	1-57/64	51786
0.6496	16,500 mm		18,0	123,0	73,0	48,0	48,0	63205
0.6562	$16,667 \mathrm{~mm}$	21/32	3/4	4-7/8	2-3/4	1-25/32	1-57/64	51369
0.6693	$17,000 \mathrm{~mm}$		18,0	123,0	73,0	47,0	48,0	63206
0.6719	17,066 mm	43/64	3/4	4-7/8	2-3/4	1-3/4	1-57/64	51787
0.6875	17,463 mm	11/16	3/4	4-7/8	2-3/4	1-47/64	1-57/64	51370
0.6890	17,500 mm		18,0	123,0	73,0	47,0	48,0	63207
0.7031	$17,859 \mathrm{~mm}$	45/64	3/4	4-7/8	2-3/4	1-45/64	1-57/64	51788
0.7087	18,000 mm		18,0	123,0	73,0	46,0	48,0	63208
0.7188	$18,258 \mathrm{~mm}$	23/32	3/4	4-7/8	2-3/4	1-43/64	1-57/64	51789
0.7283	$18,500 \mathrm{~mm}$		20,0	131,0	79,0	51,0	50,0	63209
0.7344	$18,654 \mathrm{~mm}$	47/64	3/4	4-7/8	2-3/4	1-21/32	1-57/64	51790
0.7480	19,000 mm		20,0	131,0	79,0	51,0	50,0	63210
0.7500	19,050 mm	3/4	3/4	5-1/4	3-1/16	1-15/16	1-31/32	51371
0.7656	19,446 mm	49/64	7/8	5-1/4	3-1/16	1-59/64	1-31/32	51372
0.7677	19,500 mm		20,0	131,0	79,0	50,0	50,0	63211
0.7812	19,842 mm	25/32	7/8	6	3-11/16	2-33/64	2-1/8	51791
0.7874	2,0000 mm		20,0	131,0	79,0	49,0	50,0	63212
0.7969	20,241 mm	51/64	7/8	6	3-11/16	2-1/2	2-1/8	51792
0.8071	20,500 mm		22,0	150,0	93,0	62,0	53,0	64513
0.8125	$20,638 \mathrm{~mm}$	13/16	7/8	6	3-11/16	2-15/32	2-1/8	51373
0.8268	$21,000 \mathrm{~mm}$		22,0	150,0	93,0	61,0	53,0	64514
0.8661	$22,000 \mathrm{~mm}$		22,0	150,0	93,0	60,0	53,0	64515
0.8750	$22,225 \mathrm{~mm}$	7/8	7/8	6	3-11/16	2-3/8	2-1/8	51374
0.9219	23,416 mm	59/64	1	6	3-11/16	2-5/16	2-1/8	51375

FRACTIONAL

Series 135 3D Fractional		Hardness	$\begin{gathered} \mathrm{Vc} \\ (\mathrm{sfm}) \end{gathered}$		DC - in							
		1/32			1/8	1/4	3/8	1/2	5/8	7/8		
ALUMINUM ALLOYS 2017, 2024, 356, 6061, 7075			$\begin{aligned} & \leq 80 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRb} \end{aligned}$	700	RPM	85568	21392	10696	7131	5348	4278	3056
		(560-840)		Fr	0.0012	0.0049	0.0098	0.0147	0.0196	0.0245	0.0344	
		Feed (ipm)		105.0	105.0	105.0	105.0	105.0	105.0	105.0		
		$\begin{gathered} \leq 150 \text { Bhn } \\ \text { or } \\ \leq 88 \mathrm{HRb} \end{gathered}$	600	RPM	73344	18336	9168	6112	4584	3667	2619	
		(480-720)	Fr	0.0012	0.0050	0.0099	0.0149	0.0199	0.0248	0.0347		
		Feed (ipm)	91.0	91.0	91.0	91.0	91.0	91.0	91.0			
	COPPER ALLOYS Alum Bronze, C110, Muntz Brass		$\begin{gathered} \leq 140 \text { Bhn } \\ \text { or } \\ \leq 3 \mathrm{HRc} \end{gathered}$	500	RPM	61120	15280	7640	5093	3820	3056	2183
		(400-600)		Fr	0.0005	0.0020	0.0039	0.0059	0.0079	0.0098	0.0137	
				Feed (ipm)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	
		$\begin{aligned} & \leq 200 \text { Bhn } \\ & \text { or } \\ & \leq 23 \mathrm{HRc} \end{aligned}$	400	RPM	48896	12224	6112	4075	3056	2445	1746	
			(320-480)	Fr	0.0005	0.0020	0.0040	0.0060	0.0080	0.0100	0.0140	
				Feed (ipm)	24.5	24.5	24.5	24.5	24.5	24.5	24.5	
	HIGH TEMP ALLOYS (NICKEL , COBALT, IRON BASE) Inconel 601, 617, 625, Incoloy, Monel 400, Rene, Waspaloy	$\begin{gathered} \leq 300 \text { Bhn } \\ \text { or } \\ \leq 32 \mathrm{HRc} \end{gathered}$	55	RPM	6723	1681	840	560	420	336	240	
			(44-66)	Fr	0.0002	0.0008	0.0015	0.0023	0.0031	0.0039	0.0054	
				Feed (ipm)	1.3	1.3	1.3	1.3	1.3	1.3	1.3	
		$\begin{gathered} \leq 400 \text { Bhn } \\ \text { or } \\ \leq 43 \mathrm{HRc} \end{gathered}$	30	RPM	3667	917	458	306	229	183	131	
			(24-36)	Fr	0.0002	0.0007	0.0013	0.0020	0.0026	0.0033	0.0046	
				Feed (ipm)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6AI2Sn4Zr2Mo, Ti4AI4Mo2Sn0.5Si, Ti-6AI4V	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	135	RPM	16502	4126	2063	1375	1031	825	589	
			(108-162)	Fr	0.0004	0.0018	0.0035	0.0053	0.0071	0.0088	0.0124	
				Feed (ipm)	7.3	7.3	7.3	7.3	7.3	7.3	7.3	
		$\begin{gathered} \leq 350 \text { Bhn } \\ \text { or } \\ \leq 38 \mathrm{HRc} \end{gathered}$	100	RPM	12224	3056	1528	1019	764	611	437	
			(80-120)	Fr	0.0004	0.0016	0.0033	0.0049	0.0065	0.0082	0.0115	
				Feed (ipm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
		$\begin{gathered} \leq 440 \text { Bhn } \\ \text { or } \\ \leq 47 \mathrm{HRc} \end{gathered}$	55	RPM	6723	1681	840	560	420	336	240	
			(44-66)	Fr	0.0003	0.0012	0.0024	0.0036	0.0048	0.0059	0.0083	
				Feed (ipm)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
H	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{aligned} & \leq 475 \mathrm{Bhn} \\ & \text { or } \\ & \leq 50 \mathrm{HRc} \end{aligned}$	75	RPM	9168	2292	1146	764	573	458	327	
			(60-90)	Fr	0.0002	0.0008	0.0016	0.0024	0.0031	0.0039	0.0055	
				Feed (ipm)	1.8	1.8	1.8	1.8	1.8	1.8	1.8	

Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
rpm = Vc x 3.82 / DC
$i p m=F r \times r p m$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

continued on next page

Series 135 3D Metric		Hardness	$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{min}) \end{gathered}$		DC•mm								
				1.5	3	6	8	10	12	16	20		
N	ALUMINUM ALLOYS 2017, 2024, 356, 6061, 7075		$\begin{aligned} & \leq 80 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRb} \end{aligned}$	213	RPM	45239	22620	11310	8482	6786	5655	4241	3393
		(171-256)		Fr	0.059	0.119	0.238	0.317	0.396	0.476	0.634	0.793	
				Feed (mm/min)	2690	2690	2690	2690	2690	2690	2690	2690	
		$\begin{gathered} \leq 150 \mathrm{Bhn} \\ \text { or } \\ \leq 8 \mathrm{HRb} \end{gathered}$	183	RPM	38777	19388	9694	7271	5816	4847	3635	2908	
			(146-219)	Fr	0.060	0.120	0.240	0.320	0.400	0.480	0.640	0.799	
				Feed (mm/min)	2325	2325	2325	2325	2325	2325	2325	2325	
	COPPER ALLOYS Alum Bronze, C110, Muntz Brass	$\begin{gathered} \leq 140 \mathrm{Bhn} \\ \text { or } \\ \leq 3 \mathrm{HRc} \end{gathered}$	152	RPM	32314	16157	8078	6059	4847	4039	3029	2424	
			(122-183)	Fr	0.024	0.048	0.096	0.128	0.160	0.192	0.256	0.320	
				Feed (mm/min)	776	776	776	776	776	776	776	776	
		$\begin{gathered} \leq 200 \text { Bhn } \\ \text { or } \\ \leq 23 \mathrm{HRc} \end{gathered}$	122	RPM	25851	12926	6463	4847	3878	3231	2424	1939	
			(98-146)	Fr	0.024	0.049	0.097	0.130	0.162	0.195	0.260	0.325	
				Feed (mm/min)	630	630	630	630	630	630	630	630	
	HIGH TEMP ALLOYS (NICKEL , COBALT, IRON BASE) Inconel 601, 617, 625, Incoloy, Monel 400, Rene, Waspaloy	$\begin{gathered} \leq 300 \text { Bhn } \\ \text { or } \\ \leq 32 \mathrm{HRc} \end{gathered}$	17	RPM	3555	1777	889	666	533	444	333	267	
			(13-20)	Fr	0.010	0.020	0.039	0.053	0.066	0.079	0.105	0.131	
				Feed (mm/min)	35	35	35	35	35	35	35	35	
		≤ 400 Bhn	9	RPM	1939	969	485	364	291	242	182	145	
		or		Fr	0.008	0.015	0.031	0.041	0.052	0.062	0.083	0.103	
			(1)	Feed (mm/min)	15	15	15	15	15	15	15	15	
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6AI2Sn4Zr2Mo, Ti4A14Mo2Sn0.5Si, Ti-6AI4V	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	41	RPM	8725	4362	2181	1636	1309	1091	818	654	
			(33-49)	Fr	0.021	0.042	0.085	0.113	0.141	0.170	0.226	0.283	
				Feed (mm/min)	185	185	185	185	185	185	185	185	
		$\begin{gathered} \leq 350 \text { Bhn } \\ \text { or } \\ \leq 38 \mathrm{HRc} \end{gathered}$	30	RPM	6463	3231	1616	1212	969	808	606	485	
			(24-37)	Fr	0.019	0.039	0.077	0.103	0.129	0.155	0.206	0.258	
				Feed (mm/min)	125	125	125	125	125	125	125	125	
		$\begin{aligned} & \leq 440 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	17	RPM	3555	1777	889	666	533	444	333	267	
				Fr	0.014	0.028	0.056	0.075	0.094	0.113	0.150	0.188	
			(13-20)	Feed (mm/min)	50	50	50	50	50	50	50	50	
H	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{aligned} & \leq 475 \mathrm{Bhn} \\ & \text { or } \\ & \leq 50 \mathrm{HRc} \end{aligned}$	23	RPM	4847	2424	1212	909	727	606	454	364	
			(18-27)	Fr	0.009	0.019	0.037	0.050	0.062	0.074	0.099	0.124	
				Feed (mm/min)	45	45	45	45	45	45	45	45	

Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
rpm $=($ Vc $\times 1000) /(D C \times 3.14)$
$\mathrm{mm} / \mathrm{min}=\mathrm{Fr} x \mathrm{rpm}$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

FRACTIONAL \& METRIC
Common

- 4-margin design
improves accuracy and
sufface fininh along with
increased strength for
aggressive drilling
- Specialized self-
centering notched point
eliminates the need for
spot driling decreasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials ≤ 56 HRic
(577 Bhn)

TOLERANCES (inch) S. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON = h_{6}
>10-18 diameter
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS

| |
| :--- | STAINLESS STEELS \(\left\lvert\, ~\left(\begin{array}{l}CAST IRON

\hline NON-FERROUS

\hline HIGHTEMP ALLOYS

\hline HARDENED STEELS

\hline\end{array}\right.\right.\)

For patent
information visit www.ksptpatents.com

HIGH PERFORMANCE CARBIDE DRILLS

FRACTIONAL\& METRIC SERIES

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

FRACTIONAL \& METRIC
Common

FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggressive drilling
- Speciailizd self-
centering notched point
eliminates the need for
spot driling decreasing
thrust and deflection
- Engineered edge
protection improves edge
strenght and reduces
edge fatigue allowing for
increased feed rates
- Recommendef for
materials ≤ 56 HRc
(≤ 577 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{gathered} \text { SHANK } \\ \text { DIAMETER } \\ \text { DCON } \end{gathered}$	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	Ti-NAMITE-A (AITiN)
0.2055	5,220 mm	\#5	1/4	3-1/4	1-3/4	1-29/64	1-7/16	51590
0.2067	$5,250 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	64123
0.2087	5,300 mm		6,0	82,0	44,0	36,0	36,0	64124
0.2090	5,309 mm	\#4	1/4	3-1/4	1-3/4	1-7/16	1-7/16	51508
0.2126	$5,400 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	64125
0.2130	$5,410 \mathrm{~mm}$	\#3	1/4	3-1/4	1-3/4	1-7/16	1-7/16	51509
0.2165	$5,500 \mathrm{~mm}$		6,0	82,0	44,0	36,0	36,0	64126
0.2188	5,558 mm	7/32	1/4	3-1/4	1-3/4	1-27/64	1-7/16	51510
0.2205	5,600 mm		6,0	82,0	44,0	36,0	36,0	64127
0.2210	5,613 mm	\#2	1/4	3-1/4	1-3/4	1-27/64	1-7/16	52335
0.2244	5,700 mm		6,0	82,0	44,0	35,0	36,0	64128
0.2280	5,791 mm	\#1	1/4	3-1/4	1-3/4	1-13/32	1-7/16	52336
0.2283	$5,800 \mathrm{~mm}$		6,0	82,0	44,0	35,0	36,0	64129
0.2323	5,900 mm		6,0	82,0	44,0	35,0	36,0	64130
0.2340	$5,944 \mathrm{~mm}$	A	1/4	3-1/4	1-3/4	1-13/32	1-7/16	52337
0.2344	5,954 mm	15/64	1/4	3-1/4	1-3/4	1-13/32	1-7/16	51591
0.2362	6,000 mm		6,0	82,0	44,0	35,0	36,0	64131
0.2380	6,045 mm	B	1/4	$35 / 8$	2-5/64	1-13/32	1-7/16	52338
0.2402	6,100 mm		8,0	91,0	53,0	44,0	36,0	64132
0.2420	6,147 mm	C	1/4	3 5/8	2-5/64	1-13/32	1-7/16	52339
0.2441	6,200 mm		8,0	91,0	53,0	44,0	36,0	64133
0.2460	6,248 mm	D	1/4	$35 / 8$	2-5/64	1-13/32	1-7/16	52340
0.2461	6,250 mm		8,0	91,0	53,0	44,0	36,0	64134
0.2480	6,300 mm		8,0	91,0	53,0	44,0	36,0	64135
0.2500	6,350 mm	1/4 E \#0	1/4	3-5/8	2-5/64	1-45/64	1-7/16	51511
0.2520	6,400 mm		8,0	91,0	53,0	43,0	36,0	64136
0.2559	6,500 mm		8,0	91,0	53,0	43,0	36,0	64137
0.2570	6,528 mm	F	5/16	3-5/8	2-5/64	1-45/64	1-7/16	51512
0.2598	6,600 mm		8,0	91,0	53,0	43,0	36,0	64138
0.2610	6,629 mm	G	5/16	$35 / 8$	2 5/64	1-11/16	17/16	52341
0.2638	6,700 mm		8,0	91,0	53,0	43,0	36,0	64139
0.2656	6,746 mm	17/64	5/16	3-5/8	2-5/64	1-11/16	1-7/16	51513
0.2660	6,756 mm	H	5/16	3-5/8	2-5/64	1-11/16	1-7/16	52342
0.2677	6,800 mm		8,0	91,0	53,0	43,0	36,0	64140
0.2717	6,900 mm		8,0	91,0	53,0	43,0	36,0	64141
0.2720	6,909 mm	1	5/16	3-5/8	2-5/64	1-43/64	1-7/16	51514
0.2756	7,000 mm		8,0	91,0	53,0	42,0	36,0	64142
0.2770	7,036 mm	J	5/16	$35 / 8$	2-5/64	1-43/64	1-7/16	52343
							ontinued	on next page

TOLERANCES (inch) S. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181- 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=\mathrm{h}_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON = h_{6}
>10-18 diameter
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS

STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

HIGH PERFORMANCE CARBIDE DRILLS

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{gathered} \text { SHANK } \\ \text { DIAMETER } \\ \text { DCON } \end{gathered}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LENG	Ti-NAMITE-A (AITiN)
0.2795	7,100 mm		8,0	91,0	53,0	42,0	36,0	64143
0.2810	7,137 mm	K	5/16	$35 / 8$	2-5/64	1-21/32	1-7/16	52344
0.2812	7,142 mm	9/32	5/16	3-5/8	2-5/64	1-21/32	1-7/16	51515
0.2835	7,200 mm		8,0	91,0	53,0	42,0	36,0	64144
0.2854	7,250 mm		8,0	91,0	53,0	42,0	36,0	64145
0.2874	7,300 mm		8,0	91,0	53,0	42,0	36,0	64146
0.2900	7,366 mm	L	5/16	3-5/8	2-5/64	1-41/64	1-7/16	52345
0.2913	7,400 mm		8,0	91,0	53,0	42,0	36,0	64147
0.2950	7,493 mm	M	5/16	3-5/8	2-5/64	1-41/64	1-7/16	52346
0.2953	7,500 mm		8,0	91,0	53,0	42,0	36,0	64148
0.2969	7,541 mm	19/64	5/16	3-5/8	2-5/64	1-41/64	1-7/16	51516
0.2992	7,600 mm		8,0	91,0	53,0	42,0	36,0	64149
0.3020	7,671 mm	N	5/16	3-5/8	2-5/64	1-5/8	1-7/16	52347
0.3031	7,700 mm		8,0	91,0	53,0	41,0	36,0	64150
0.3071	7,800 mm		8,0	91,0	53,0	41,0	36,0	64151
0.3110	7,900 mm		8,0	91,0	53,0	41,0	36,0	64152
0.3125	7,938 mm	5/16	5/16	3-5/8	2-5/64	1-39/64	1-7/16	51517
0.3150	8,000 mm		8,0	91,0	53,0	41,0	36,0	64153
0.3160	8,026 mm	0	3/8	4	2-13/32	1-15/16	1-9/16	52348
0.3189	8,100 mm		10,0	103,0	61,0	49,0	40,0	64154
0.3228	8,200 mm		10,0	103,0	61,0	49,0	40,0	64155
0.3230	8,204 mm	P	3/8	4	2-13/32	1-59/64	1-9/16	51518
0.3268	8,300 mm		10,0	103,0	61,0	49,0	40,0	64156
0.3281	8,334 mm	21/64	3/8	4	2-13/32	1-59/64	1-9/16	51519
0.3307	$8,400 \mathrm{~mm}$		10,0	103,0	61,0	48,0	40,0	64157
0.3320	8,433 mm	0	3/8	4	2-13/32	1-59/64	1-9/16	51520
0.3346	8,500 mm		10,0	103,0	61,0	48,0	40,0	64158
0.3386	8,600 mm		10,0	103,0	61,0	48,0	40,0	64159
0.3390	$8,611 \mathrm{~mm}$	R	3/8	4	2-13/32	1-29/32	1-9/16	52349
0.3425	8,700 mm		10,0	103,0	61,0	48,0	40,0	64160
0.3438	8,733 mm	11/32	3/8	4	2-13/32	1-57/64	1-9/16	51521
0.3465	8,800 mm		10,0	103,0	61,0	48,0	40,0	64161
0.3480	8,839 mm	S	3/8	4	2-13/32	1-57/64	1-9/16	51522
0.3504	8,900 mm		10,0	103,0	61,0	48,0	40,0	64162
0.3543	9,000 mm		10,0	103,0	61,0	48,0	40,0	64163
0.3580	9,093 mm	T	3/8	4	$213 / 32$	1-7/8	$19 / 16$	52350
0.3583	9,100 mm		10,0	103,0	61,0	47,0	40,0	64164
0.3594	9,129 mm	23/64	3/8	4	2-13/32	1-7/8	1-9/16	51523
0.3622	9,200 mm		10,0	103,0	61,0	47,0	40,0	64165
0.3642	9,250 mm		10,0	103,0	61,0	47,0	40,0	64166
0.3661	9,300 mm		10,0	103,0	61,0	47,0	40,0	64167
0.3680	9,347 mm	U	3/8	4	2-13/32	1-55/64	1-9/16	51524
0.3701	9,400 mm		10,0	103,0	61,0	47,0	40,0	64168
0.3740	9,500 mm		10,0	103,0	61,0	47,0	40,0	64169
							ontinued	on next page

FRACTIONAL \& METRIC
\square
Common
$5 \pi \pi 0$
Reach

Point Angle
Margins

135 5xD

FRACTIONAL \& METRIC SERIES

- 4-margin design improves accuracy and surface finish along with increased strength for aggressive drilling
- Specialized selfcentering notched point eliminates the need for spot drilling decreasing thrust and deflection
- Engineered edge protection improves edge strength and reduces edge fatigue allowing for increased feed rates
- Recommended for materials ≤ 56 HRc (≤ 577 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	Ti-NAMITE-A (AITiN)
0.3750	9,525 mm	3/8	3/8	4	2-13/32	1-27/32	1-9/16	51525
0.3770	9,576 mm	V	1/2	4	2-13/32	1-27/32	1-9/16	52351
0.3780	$9,600 \mathrm{~mm}$		10,0	103,0	61,0	47,0	40,0	64170
0.3819	9,700 mm		10,0	103,0	61,0	46,0	40,0	64171
0.3858	9,800 mm		10,0	103,0	61,0	46,0	40,0	64172
0.3860	9,804 mm	W	1/2	4	2-13/32	1-53/64	1-9/16	51526
0.3898	9,900 mm		10,0	103,0	61,0	46,0	40,0	64173
0.3906	9,921 mm	25/64	1/2	4	2-13/32	1-53/64	1-9/16	51527
0.3937	$10,000 \mathrm{~mm}$		10,0	103,0	61,0	46,0	40,0	64174
0.3970	$10,084 \mathrm{~mm}$	X	1/2	4-11/16	2-3/4	2-5/32	1-49/64	52352
0.3976	$10,100 \mathrm{~mm}$		12,0	118,0	71,0	56,0	45,0	64175
0.4016	10,200 mm		12,0	118,0	71,0	56,0	45,0	64176
0.4040	$10,262 \mathrm{~mm}$	Y	1/2	4-11/16	2-3/4	2-5/32	1-49/64	52353
0.4055	10,300 mm		12,0	118,0	71,0	56,0	45,0	64177
0.4062	$10,317 \mathrm{~mm}$	13/32	1/2	4-11/16	2-3/4	2-9/64	1-49/64	51528
0.4095	$10,400 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	64178
0.4130	$10,490 \mathrm{~mm}$	Z	1/2	4-11/16	2-3/4	2-9/64	1-49/64	52354
0.4134	$10,500 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	64179
0.4173	$10,600 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	64180
0.4213	10,700 mm		12,0	118,0	71,0	55,0	45,0	64181
0.4219	$10,716 \mathrm{~mm}$	27/64	1/2	4-11/16	2-3/4	2-1/8	1-49/64	51529
0.4252	10,800 mm		12,0	118,0	71,0	55,0	45,0	64182
0.4291	$10,900 \mathrm{~mm}$		12,0	118,0	71,0	55,0	45,0	64183
0.4331	$11,000 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	64184
0.4370	$11,100 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	64185
0.4375	$11,113 \mathrm{~mm}$	7/16	1/2	4-11/16	2-3/4	2-3/32	1-49/64	51530
0.4409	$11,200 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	64186
0.4429	$11,250 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	64187
0.4449	$11,300 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	64188
0.4488	$11,400 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	64189
0.4528	$11,500 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	64190
0.4531	$11,509 \mathrm{~mm}$	29/64	1/2	4-11/16	2-3/4	2-5/64	1-49/64	51531
0.4567	$11,600 \mathrm{~mm}$		12,0	118,0	71,0	54,0	45,0	64191
0.4606	$11,700 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	64192
0.4646	$11,800 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	64193
0.4685	$11,900 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	64194
0.4688	$11,908 \mathrm{~mm}$	15/32	1/2	4-11/16	2-3/4	2-3/64	1-49/64	51532
0.4724	$12,000 \mathrm{~mm}$		12,0	118,0	71,0	53,0	45,0	64195
							continued	on next page

TOLERANCES (inch) $\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181- 2362 DIAMETER
DC $=+.00016 /+.00063$
DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 diameter
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 diameter
DC $=+0,008 /+0,029$
DCON $=h_{6}$

For patent information visit www.ksptpatents.com

HIGH PERFORMANCE CARBIDE DRILLS

FRACTIONAL\& METRIC SERIES

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	Ti-NAMITE-A (AITiN)
0.4844	12,304 mm	31/64	1/2	4-7/8	3-1/32	1-5/16	1-49/64	51533
0.4921	$12,500 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	64196
0.5000	$12,700 \mathrm{~mm}$	1/2	1/2	4-7/8	3-1/32	2-9/32	1-49/64	51534
0.5039	$12,800 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	64197
0.5118	$13,000 \mathrm{~mm}$		14,0	124,0	77,0	58,0	45,0	64198
0.5156	13,096 mm	33/64	5/8	4-7/8	3-1/32	2-17/64	1-49/64	51535
0.5312	13,492 mm	17/32	5/8	4-7/8	$3-1 / 32$	2-15/64	1-49/64	51536
0.5315	$13,500 \mathrm{~mm}$		14,0	124,0	77,0	57,0	45,0	64199
0.5469	$13,8 \mathrm{~mm}$	35/64	5/8	4-7/8	3-1/32	2-7/32	1-49/64	51537
0.5512	$14,000 \mathrm{~mm}$		14,0	124,0	77,0	56,0	45,0	64200
0.5625	14,288 mm	9/16	5/8	5-1/4	3-1/4	2-13/32	1-57/64	51538
0.5709	14,500 mm		16,0	133,0	83,0	61,0	48,0	64201
0.5781	$14,684 \mathrm{~mm}$	37/64	5/8	5-1/4	3-1/4	2-25/64	1-57/64	51539
0.5906	$15,000 \mathrm{~mm}$		16,0	133,0	83,0	60,0	48,0	64202
0.5938	$15,083 \mathrm{~mm}$	19/32	5/8	5-1/4	3-1/4	2-23/64	1-57/64	51592
0.6094	$15,479 \mathrm{~mm}$	39/64	5/8	5-1/4	3-1/4	2-11/32	1-57/64	51593
0.6102	15,500 mm		16,0	133,0	83,0	60,0	48,0	64203
0.6250	$15,875 \mathrm{~mm}$	5/8	5/8	5-1/4	3-1/4	2-5/16	1-57/64	51540
0.6299	$16,000 \mathrm{~mm}$		16,0	133,0	83,0	59,0	48,0	64204
0.6406	16,271 mm	41/64	3/4	5-5/8	3-5/8	2-43/64	1-57/64	51594
0.6496	16,500 mm		18,0	143,0	93,0	68,0	48,0	64205
0.6562	$16,667 \mathrm{~mm}$	21/32	3/4	5-5/8	3-5/8	2-41/64	1-57/64	51541
0.6693	$17,000 \mathrm{~mm}$		18,0	143,0	93,0	67,0	48,0	64206
0.6719	17,066 mm	43/64	3/4	5-5/8	3-5/8	2-5/8	1-57/64	51595
0.6875	17,463 mm	11/16	3/4	5-5/8	3-5/8	2-19/32	1-57/64	51542
0.6890	$17,500 \mathrm{~mm}$		18,0	143,0	93,0	67,0	48,0	64207
0.7031	$17,859 \mathrm{~mm}$	45/64	3/4	5-5/8	3-5/8	2-37/64	1-57/64	51543
0.7087	$18,000 \mathrm{~mm}$		18,0	143,0	93,0	66,0	48,0	64208
0.7188	18,258 mm	23/32	3/4	6	4	2-59/64	1-31/32	51596
0.7283	18,500 mm		20,0	153,0	101,0	73,0	50,0	64209
0.7344	$18,654 \mathrm{~mm}$	47/64	3/4	6	4	2-29/32	1-31/32	51544
0.7480	19,000 mm		20,0	153,0	101,0	73,0	50,0	64210
0.7500	19,050 mm	3/4	3/4	6	4	2-7/8	1-31/32	51545
0.7656	19,446 mm	49/64	7/8	6	4	2-55/64	1-31/32	52355
0.7677	19,500 mm		20,0	153,0	101,0	72,0	50,0	64211
0.7812	19,842 mm	25/32	7/8	6	4	2-55/64	1-31/32	52356
0.7874	20,000 mm		20,0	153,0	101,0	71,0	50,0	64212
0.7969	20,241 mm	51/64	7/8	6	4	2-13/16	1-31/32	52357
0.8071	20,500 mm		22,0	153,0	101,0	70,0	50,0	64533
0.8125	20,638 mm	13/16	7/8	6-1/2	4-1/2	3-3/32	1-31/32	52358
0.8268	21,000 mm		22,0	153,0	101,0	69,0	50,0	64534
0.8661	22,000 mm		22,0	178,0	127,0	94,0	50,0	64535
0.8750	$22,225 \mathrm{~mm}$	7/8	7/8	6-1/2	4-1/2	3-3/16	1-31/32	52359
0.9219	23,416 mm	59/64	1	7	5	3-5/8	2-1/8	52360

FRACTIONAL

	Series		$\begin{gathered} \mathrm{Vc} \\ (\mathrm{sfm}) \end{gathered}$					DC•in			
	Fractional	Hardness			1/32	1/8	1/4	3/8	1/2	5/8	7/8
	CARBON STEELS 1018, 1040, 1080, 1090, 10L50, 1140, 1212, 12L15, 1525, 1536	$\begin{gathered} \leq 175 \text { Bhn } \\ \text { or } \\ \leq 7 \mathrm{HRc} \end{gathered}$	345	RPM	42173	10543	5272	3514	2636	2109	1506
			(276-414)	Fr	0.0010	0.0040	0.0080	0.0120	0.0159	0.0199	0.0279
				Feed (ipm)	42.0	42.0	42.0	42.0	42.0	42.0	42.0
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	310	RPM	37894	9474	4737	3158	2368	1895	1353
			(248-372)	Fr	0.0009	0.0036	0.0072	0.0108	0.0144	0.0179	0.0251
				Feed (ipm)	34.0	34.0	34.0	34.0	34.0	34.0	34.0
		$\begin{aligned} & \leq 425 \mathrm{Bhn} \\ & \text { or } \\ & \leq 45 \mathrm{HRc} \end{aligned}$	180	RPM	22003	5501	2750	1834	1375	1100	786
			(144-216)	Fr	0.0007	0.0030	0.0060	0.0090	0.0120	0.0150	0.0210
				Feed (ipm)	16.5	16.5	16.5	16.5	16.5	16.5	16.5
	ALLOY STEELS 4140, 4150, 4320, 5120, 5150, 8630, 86L20, 50100	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	270	RPM	33005	8251	4126	2750	2063	1650	1179
			(216-324)	Fr	0.0008	0.0030	0.0061	0.0091	0.0121	0.0151	0.0212
				Feed (ipm)	25.0	25.0	25.0	25.0	25.0	25.0	25.0
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	165	RPM	20170	5042	2521	1681	1261	1008	720
			(132-198)	Fr	0.0006	0.0026	0.0052	0.0077	0.0103	0.0129	0.0180
				Feed (ipm)	13.0	13.0	13.0	13.0	13.0	13.0	13.0
		$\begin{aligned} & \leq 425 \mathrm{Bhn} \\ & \text { or } \\ & \leq 45 \mathrm{HRc} \end{aligned}$	115	RPM	14058	3514	1757	1171	879	703	502
			(92-138)	Fr	0.0004	0.0018	0.0035	0.0053	0.0071	0.0088	0.0123
				Feed (ipm)	6.2	6.2	6.2	6.2	6.2	6.2	6.2
	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{gathered} \leq 200 \mathrm{Bhn} \\ \text { or } \\ \leq 13 \mathrm{HRC} \end{gathered}$	120	RPM	14669	3667	1834	1222	917	733	524
			(96-144)	Fr	0.0006	0.0026	0.0051	0.0077	0.0103	0.0128	0.0179
				Feed (ipm)	9.4	9.4	9.4	9.4	9.4	9.4	9.4
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	80	RPM	9779	2445	1222	815	611	489	349
			(64-96)	Fr	0.0003	0.0012	0.0024	0.0036	0.0047	0.0059	0.0083
				Feed (ipm)	2.9	2.9	2.9	2.9	2.9	2.9	2.9
M	STAINLESS STEELS (FREE MACHINING) 303, 416, 420F, 430F, 440F	$\begin{gathered} \leq 185 \mathrm{Bhn} \\ \text { or } \\ \leq 9 \mathrm{HRc} \end{gathered}$	250	RPM	30560	7640	3820	2547	1910	1528	1091
			(200-300)	Fr	0.0006	0.0026	0.0051	0.0077	0.0102	0.0128	0.0179
				Feed (ipm)	19.5	19.5	19.5	19.5	19.5	19.5	19.5
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	150	RPM	18336	4584	2292	1528	1146	917	655
			(120-180)	Fr	0.0005	0.0020	0.0039	0.0059	0.0079	0.0098	0.0137
				Feed (ipm)	9.0	9.0	9.0	9.0	9.0	9.0	9.0
	STAINLESS STEELS (DIFFICULT) 304, 316, 321, 13-8 PH, 15-5PH, 17-4 PH, Custom 450	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	80	RPM	9779	2445	1222	815	611	489	349
			(64-96)	Fr	0.0005	0.0020	0.0039	0.0059	0.0079	0.0098	0.0137
				Feed (ipm)	4.8	4.8	4.8	4.8	4.8	4.8	4.8
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	55	RPM	6723	1681	840	560	420	336	240
			(44-66)	Fr	0.0004	0.0018	0.0036	0.0054	0.0071	0.0089	0.0125
				Feed (ipm)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
K	CAST IRONS Gray, Malleable, Ductile	$\begin{gathered} \leq 220 \mathrm{Bhn} \\ \text { or } \\ \leq 19 \mathrm{HRc} \end{gathered}$	300	RPM	36672	9168	4584	3056	2292	1834	1310
			(240-360)	Fr	0.0011	0.0045	0.0089	0.0134	0.0179	0.0224	0.0313
				Feed (ipm)	41.0	41.0	41.0	41.0	41.0	41.0	41.0
		$\begin{gathered} \leq 260 \mathrm{Bhn} \\ \text { or } \\ \leq 26 \mathrm{HRc} \end{gathered}$	265	RPM	32394	8098	4049	2699	2025	1620	1157
			(212-318)	Fr	0.0011	0.0046	0.0091	0.0137	0.0183	0.0228	0.0320
				Feed (ipm)	37.0	37.0	37.0	37.0	37.0	37.0	37.0

Series 135 5D Fractional		Hardness	$\begin{gathered} \text { Vc } \\ (\mathrm{sfm}) \end{gathered}$		DC - in							
				1/32	1/8	1/4	3/8	1/2	5/8	7/8		
N	ALUMINUM ALLOYS 2017, 2024, 356, 6061, 7075		$\begin{aligned} & \leq 80 \mathrm{Bhn} \\ & \text { or } \\ & \leq 47 \mathrm{HRb} \end{aligned}$	635	RPM	77622	19406	9703	6469	4851	3881	2772
		(508-762)		Fr	0.0012	0.0049	0.0099	0.0148	0.0198	0.0247	0.0346	
				Feed (ipm)	96.0	96.0	96.0	96.0	96.0	96.0	96.0	
		$\begin{aligned} & \leq 150 \mathrm{Bhn} \\ & \text { or } \\ & \leq 88 \mathrm{HRc} \end{aligned}$	540	RPM	66010	16502	8251	5501	4126	3300	2357	
			(432-648)	Fr	0.0012	0.0050	0.0099	0.0149	0.0199	0.0248	0.0348	
				Feed (ipm)	82.0	82.0	82.0	82.0	82.0	82.0	82.0	
	COPPER ALLOYS Alum Bronze, C110, Muntz Brass	$\begin{gathered} \leq 140 \mathrm{Bhn} \\ \text { or } \\ \leq 3 \mathrm{HRc} \end{gathered}$	450	RPM	55008	13752	6876	4584	3438	2750	1965	
			(360-540)	Fr	0.0005	0.0020	0.0040	0.0060	0.0080	0.0100	0.0140	
				Feed (ipm)	27.5	27.5	27.5	27.5	27.5	27.5	27.5	
		$\begin{aligned} & \leq 200 \text { Bhn } \\ & \text { or } \\ & \leq 23 \text { HRc } \end{aligned}$	360	RPM	44006	11002	5501	3667	2750	2200	1572	
			(288-432)	Fr	0.0005	0.0020	0.0040	0.0060	0.0080	0.0100	0.0140	
				Feed (ipm)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
	HIGH TEMP ALLOYS (Nickel , Cobalt, Iron Base) Inconel 601, 617, 625, Incoloy, Monel 400, Rene, Waspaloy	$\begin{aligned} & \leq 300 \text { Bhn } \\ & \text { or } \\ & \leq 32 \mathrm{HRc} \end{aligned}$	40	RPM	4890	1222	611	407	306	244	175	
			(32-48)	Fr	0.0002	0.0008	0.0016	0.0025	0.0033	0.0041	0.0057	
				Feed (ipm)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
		≤ 400 Bhn	20	RPM	2445	611	306	204	153	122	87	
		or	16-24)	Fr	0.0002	0.0007	0.0013	0.0020	0.0026	0.0033	0.0046	
		≤ 43 HRc	(16-24)	Feed (ipm)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6AI2Sn4Zr2Mo, Ti4A14Mo2Sn0.5Si, Ti-6AI4V	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	105	RPM	12835	3209	1604	1070	802	642	458	
			(84-126)	Fr	0.0005	0.0018	0.0036	0.0054	0.0072	0.0090	0.0127	
				Feed (ipm)	5.8	5.8	5.8	5.8	5.8	5.8	5.8	
		$\begin{aligned} & \leq 350 \mathrm{Bhn} \\ & \text { or } \\ & \leq 38 \mathrm{HRc} \end{aligned}$	80	RPM	9779	2445	1222	815	611	489	349	
			(64-96)	Fr	0.0004	0.0016	0.0032	0.0048	0.0064	0.0080	0.0112	
				Feed (ipm)	3.9	3.9	3.9	3.9	3.9	3.9	3.9	
		$\begin{aligned} & \leq 440 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	42	RPM	5134	1284	642	428	321	257	183	
			(34-50)	Fr	0.0003	0.0012	0.0025	0.0037	0.0050	0.0062	0.0087	
				Feed (ipm)	1.6	1.6	1.6	1.6	1.6	1.6	1.6	
H	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{gathered} \leq 475 \mathrm{Bhn} \\ \text { or } \\ \leq 50 \mathrm{HRc} \end{gathered}$	70	RPM	8557	2139	1070	713	535	428	306	
			(56-84)	Fr	0.0002	0.0008	0.0016	0.0024	0.0032	0.0040	0.0056	
				Feed (ipm)	1.7	1.7	1.7	1.7	1.7	1.7	1.7	

Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
rpm $=$ Vc $\times 3.82$ / DC
ipm $=\mathrm{Fr} \times \mathrm{rpm}$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\ominus}$ for complete technical information (www.kyocera-sgstool.com)

METRIC

	Series		$\underset{(\mathrm{m} / \mathrm{min})}{\mathrm{Vc}}$		DC•mm							
	Metric	Hardness			1.5	3	6	8	10	12	16	20
	CARBON STEELS 1018, 1040, 1080, 1090, 10L50, 1140, 1212, 12L15, 1525, 1536	$\begin{aligned} & \leq 175 \mathrm{Bhn} \\ & \quad \text { or } \\ & \leq 7 \mathrm{HRc} \end{aligned}$	105	RPM	22297	11148	5574	4181	3344	2787	2090	1672
			(84-126)	Fr	0.048	0.095	0.190	0.254	0.317	0.380	0.507	0.634
				Feed (mm/min)	1060	1060	1060	1060	1060	1060	1060	1060
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	94	RPM	20035	10017	5009	3756	3005	2504	1878	1503
			(76-113)	Fr	0.043	0.085	0.171	0.228	0.285	0.341	0.455	0.569
				Feed (mm/min)	855	855	855	855	855	855	855	855
		$\begin{aligned} & \leq 425 \text { Bhn } \\ & \text { or } \\ & \leq 45 \mathrm{HRc} \end{aligned}$	55	RPM	11633	5816	2908	2181	1745	1454	1091	872
			(44-66)	Fr	0.036	0.071	0.143	0.190	0.238	0.285	0.381	0.476
				Feed (mm/min)	415	415	415	415	415	415	415	415
	ALLOY STEELS 4140, 4150, 4320, 5120, 5150, 8630, 86L20, 50100	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	82	RPM	17449	8725	4362	3272	2617	2181	1636	1309
			(66-99)	Fr	0.036	0.072	0.143	0.191	0.239	0.287	0.382	0.478
P				Feed (mm/min)	625	625	625	625	625	625	625	625
P		$\begin{gathered} \leq 375 \text { Bhn } \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	50	RPM	10664	5332	2666	1999	1600	1333	1000	800
			(40-60)	Fr	0.031	0.062	0.124	0.165	0.206	0.248	0.330	0.413
				Feed (mm/min)	330	330	330	330	330	330	330	330
		$\begin{aligned} & \leq 425 \text { Bhn } \\ & \text { or } \\ & \leq 45 \mathrm{HRc} \end{aligned}$	35	RPM	7432	3716	1858	1394	1115	929	697	557
			(28-42)	Fr	0.022	0.043	0.086	0.115	0.144	0.172	0.230	0.287
				Feed (mm/min)	160	160	160	160	160	160	160	160
	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{gathered} \leq 200 \text { Bhn } \\ \text { or } \\ \leq 13 \mathrm{HRc} \end{gathered}$	37	RPM	7755	3878	1939	1454	1163	969	727	582
			(29-44)	Fr	0.031	0.062	0.124	0.165	0.206	0.248	0.330	0.413
				Feed (mm/min)	240	240	240	240	240	240	240	240
		$\begin{aligned} & \leq 375 \text { Bhn } \\ & \text { or } \\ & \leq 40 \mathrm{HRc} \end{aligned}$	24	RPM	5170	2585	1293	969	776	646	485	388
			(20-29)	Fr	0.015	0.029	0.058	0.077	0.097	0.116	0.155	0.193
				Feed (mm/min)	75	75	75	75	75	75	75	75
M	STAINLESS STEELS (FREE MACHINING) 303, 416, 420F, 430F, 440F	$\begin{gathered} \leq 185 \text { Bhn } \\ \text { or } \\ \leq 9 \mathrm{HRc} \end{gathered}$	76	RPM	16157	8078	4039	3029	2424	2020	1515	1212
			(61-91)	Fr	0.031	0.061	0.123	0.163	0.204	0.245	0.327	0.408
				Feed (mm/min)	495	495	495	495	495	495	495	495
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	46	RPM	9694	4847	2424	1818	1454	1212	909	727
			(37-55)	Fr	0.024	0.047	0.095	0.127	0.158	0.190	0.253	0.316
				Feed (mm/min)	230	230	230	230	230	230	230	230
	STAINLESS STEELS (DIFFICULT) 304, 316, 321, 13-8 PH, 15-5PH, 17-4 PH, Custom 450	$\begin{gathered} \leq 275 \text { Bhn } \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	24	RPM	5170	2585	1293	969	776	646	485	388
			(20-29)	Fr	0.023	0.046	0.093	0.124	0.155	0.186	0.248	0.309
				Feed (mm/min)	120	120	120	120	120	120	120	120
		$\begin{gathered} \leq 375 \text { Bhn } \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	17	RPM	3555	1777	889	666	533	444	333	267
			(13-20)	Fr	0.021	0.042	0.084	0.113	0.141	0.169	0.225	0.281
				Feed (mm/min)	75	75	75	75	75	75	75	75
K	CAST IRONS Gray, Malleable, Ductile	$\begin{gathered} \leq 220 \text { Bhn } \\ \text { or } \\ \leq 19 \mathrm{HRc} \end{gathered}$	91	RPM	19388	9694	4847	3635	2908	2424	1818	1454
			(73-110)	Fr	0.054	0.108	0.217	0.289	0.361	0.433	0.578	0.722
				Feed (mm/min)	1050	1050	1050	1050	1050	1050	1050	1050
		$\begin{aligned} & \leq 260 \mathrm{Bhn} \\ & \text { or } \\ & \leq 26 \mathrm{HRc} \end{aligned}$	81	RPM	17126	8563	4282	3211	2569	2141	1606	1284
			(65-97)	Fr	0.055	0.109	0.218	0.291	0.364	0.437	0.582	0.728
				Feed (mm/min)	935	935	935	935	935	935	935	935

Series 135M 5D Metric		Hardness	$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{min}) \end{gathered}$		DC•mm								
				1.5	3	6	8	10	12	16	20		
N	ALUMINUM ALLOYS 2017, 2024, 356, 6061, 7075		$\begin{aligned} & \leq 80 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRb} \end{aligned}$	194	RPM	41039	20519	10260	7695	6156	5130	3847	3078
		(155-232)		Fr	0.059	0.118	0.237	0.316	0.395	0.474	0.632	0.790	
				Feed (mm/min)	2430	2430	2430	2430	2430	2430	2430	2430	
		$\begin{gathered} \leq 150 \text { Bhn } \\ \text { or } \\ \leq 88 \mathrm{HRc} \end{gathered}$	165	RPM	34899	17449	8725	6544	5235	4362	3272	2617	
			(132-198)	Fr	0.059	0.118	0.237	0.316	0.394	0.473	0.631	0.789	
				Feed (mm/min)	2065	2065	2065	2065	2065	2065	2065	2065	
	Copper Alloys Alum Bronze, C110, Muntz Brass	$\begin{aligned} & \leq 140 \mathrm{Bhn} \\ & \text { or } \\ & \leq 3 \mathrm{HRc} \end{aligned}$	137	RPM	29082	14541	7271	5453	4362	3635	2726	2181	
			(110-165)	Fr	0.027	0.053	0.107	0.142	0.178	0.213	0.284	0.355	
				Feed (mm/min)	775	775	775	775	775	775	775	775	
		$\begin{aligned} & \leq 200 \text { Bhn } \\ & \text { or } \\ & \leq 23 \mathrm{HRc} \end{aligned}$	110	RPM	23266	11633	5816	4362	3490	2908	2181	1745	
			(88-132)	Fr	0.027	0.054	0.108	0.144	0.181	0.217	0.289	0.361	
				Feed (mm/min)	630	630	630	630	630	630	630	630	
	HIGH TEMP ALLOYS (Nickel , Cobalt, Iron Base) Inconel 601, 617, 625, Incoloy, Monel 400, Rene, Waspaloy	$\begin{gathered} \leq 300 \text { Bhn } \\ \text { or } \\ \leq 32 \mathrm{HRc} \end{gathered}$	12	RPM	2585	1293	646	485	388	323	242	194	
			(10-15)	Fr	0.010	0.019	0.039	0.052	0.064	0.077	0.103	0.129	
				Feed (mm/min)	25	25	25	25	25	25	25	25	
			6	RPM	1293	646	323	242	194	162	121	97	
		or	(5-7)	Fr	0.007	0.014	0.028	0.037	0.046	0.056	0.074	0.093	
				Feed (mm/min)	9	9	9	9	9	9	9	9	
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6AI2Sn4Zr2Mo, Ti4AI4Mo2Sn0.5Si, Ti-6AI4V	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	32	RPM	6786	3393	1696	1272	1018	848	636	509	
			(26-38)	Fr	0.021	0.043	0.085	0.114	0.142	0.171	0.228	0.285	
				Feed (mm/min)	145	145	145	145	145	145	145	145	
		$\begin{gathered} \leq 350 \text { Bhn } \\ \text { or } \\ \leq 38 \mathrm{HRc} \end{gathered}$	24	RPM	5170	2585	1293	969	776	646	485	388	
			(20-29)	Fr	0.019	0.039	0.077	0.103	0.129	0.155	0.206	0.258	
				Feed (mm/min)	100	100	100	100	100	100	100	100	
		$\begin{aligned} & \leq 440 \mathrm{Bhn} \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	13	RPM	2714	1357	679	509	407	339	254	204	
			(10-15)	Fr	0.015	0.029	0.059	0.079	0.098	0.118	0.157	0.196	
			(10-15)	Feed (mm/min)	40	40	40	40	40	40	40	40	
H	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{aligned} & \leq 475 \text { Bhn } \\ & \text { or } \\ & \leq 50 \mathrm{HRc} \end{aligned}$	21	RPM	4524	2262	1131	848	679	565	424	339	
			(17-26)	Fr	0.010	0.019	0.038	0.051	0.064	0.076	0.102	0.127	
				Feed (mm/min)	43	43	43	43	43	43	43	43	

Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
rpm $=($ Vc $\times 1000) /(D C \times 3.14)$
$\mathrm{mm} / \mathrm{min}=\mathrm{Fr} \times \mathrm{rpm}$
reduce speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

HIGH PERFORMANCE CARBIDE DRILLS

The key features designed into the Hi-PerCarb ${ }^{\circledR}$ Series 146 U and 136 U Drills allow the product to offer application benefits not only beyond that of standard carbide drills, but also other High Performance drills. Each feature of the Hi-PerCarb ${ }^{\circledR}$ Series 146 U and 136 U Drills was uniquely engineered as a solution towards addressing the issues commonly encountered during high production drilling. SERIES 146U / 136U
(A)

- a unique coolant channel design allows repositioning of the trailing margins for improved stability over conventional two and four margin drills
- eccentric style clearance reduces margin contact with the workpiece without reducing strength
(B)

END GEOMETRY

- the primary only relief allows the trailing margins to help stabilize the drill up to three times faster than conventional designs
- high shear corner geometry minimizes exit bur
- computer controlled edge hone protects against edge chipping in difficult applications
(C)

COOLANT CHANNELS

- the two-channel design provides additional coolant in the hole when thru-tool coolant is not available
(D)

COATING AND CARBIDE

- proprietary SGS Ti-NAMITE ${ }^{\oplus}-\mathrm{X}$ coating and post-coat polishing combine to minimize material adhesion and maximize wear resistance in a wide range of workpiece materials
- all Series 146 U and 136 U drills are manufactured from lab certified premium quality carbide

PERFORMANCE, PRECISION. PASSION. H-PERCARB ${ }^{\oplus}$ SERIES 146/336U FLAT BOTTOM DRILS

PERFORMANCE.

HOLE
 DIAMETER VARIATION
 4140 alloy steel / 19 HRc 2700 rpm / 25.4 ipm straight blind holes with flood coolant
 CMM diameter measurement of ten random holes shows the size variation produced by the Series 136U is ten times better than the competition.

TOOL LIFE

4140 alloy steel / 19 HRc 2700 rpm / 25.4 ipm straight blind holes with flood coolant
Tool life testing was performed until each drill exhibited sufficient damage to stop the test. Results show the Series 136 U lasts 40 percent longer than competitor 2 and 250 percent longer than competitor 1.

WALL

STRAIGHTNESS

4140 alloy steel / 19 HRc 2700 rpm / 25.4 ipm 30° angle with flood coolant

Wall straightness of holes drilled on a 30° angle show the Series 136 U produced 39 percent less deflection than competitor 3 and 57 percent less than competitor 2. During this test all tools were extended from the holder at an equal amount.

FRACTIONAL \& METRIC
Series 146U
Common
$5 \Sigma \pi D$
Internal
$\left\lvert\, \begin{gathered}180^{\circ} \\ \text { Point Angle }\end{gathered}\right.$
Margins

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggressive drilling
- Specialized self-
centering notched point
eliminates the need for
spot drilling decreasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials $\leq 56 ~ H R c$
(≤ 577 Bhn)

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	LELUTE	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{(\mathrm{TX})}{\text { Ti-NAMITE }}$
0.1181	$3,000 \mathrm{~mm}$		6,0	55,0	13,0	9,0	34,0	67705
0.1220	$3,100 \mathrm{~mm}$		6,0	55,0	14,0	9,0	34,0	67706
0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	55,0	14,0	10,0	34,0	58800
0.1260	$3,200 \mathrm{~mm}$		6,0	55,0	14,0	10,0	34,0	67707
0.1299	$3,300 \mathrm{~mm}$		6,0	55,0	15,0	10,0	34,0	67708
0.1339	$3,400 \mathrm{~mm}$		6,0	55,0	15,0	10,0	34,0	67709
0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	55,0	16,0	10,0	34,0	58801
0.1378	3,500 mm		6,0	55,0	16,0	11,0	34,0	67710
0.1405	3,569 mm	\#28	6,0	55,0	16,0	11,0	34,0	58802
0.1406	3,571 mm	9/64	6,0	55,0	16,0	11,0	34,0	58803
0.1417	3,600 mm		6,0	55,0	16,0	11,0	34,0	67711
0.1457	3,700 mm		6,0	60,0	17,0	11,0	34,0	67712
0.1470	3,734 mm	\#26	6,0	60,0	17,0	11,0	34,0	58804
0.1495	3,797 mm	\#25	6,0	60,0	17,0	11,0	34,0	58805
0.1496	$3,800 \mathrm{~mm}$		6,0	60,0	17,0	11,0	34,0	67713
0.1520	3,861 mm	\#24	6,0	60,0	17,0	12,0	34,0	58806
0.1535	3,900 mm		6,0	60,0	18,0	12,0	34,0	67714
0.1562	$3,967 \mathrm{~mm}$	5/32	6,0	60,0	18,0	12,0	34,0	58807
0.1570	$3,988 \mathrm{~mm}$	\#22	6,0	60,0	18,0	12,0	34,0	58808
0.1575	4,000 mm		6,0	60,0	18,0	12,0	34,0	67715
0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	60,0	18,0	12,0	34,0	58809
0.1610	$4,089 \mathrm{~mm}$	\#20	6,0	60,0	18,0	12,0	34,0	58810
0.1614	$4,100 \mathrm{~mm}$		6,0	60,0	18,0	12,0	34,0	67716
0.1654	$4,200 \mathrm{~mm}$		6,0	60,0	19,0	13,0	34,0	67717
0.1693	$4,300 \mathrm{~mm}$		6,0	60,0	19,0	13,0	34,0	67718
0.1719	4,366 mm	11/64	6,0	60,0	20,0	13,0	34,0	58811
0.1732	$4,400 \mathrm{~mm}$		6,0	60,0	20,0	13,0	34,0	67719
0.1770	$4,496 \mathrm{~mm}$	\#16	6,0	60,0	20,0	13,0	34,0	58812
0.1772	4,500 mm		6,0	60,0	20,0	14,0	34,0	67720
0.1811	$4,600 \mathrm{~mm}$		6,0	60,0	21,0	14,0	34,0	67721
0.1850	4,699 mm	\#13	6,0	60,0	21,0	14,0	34,0	58813
0.1875	4,763 mm	3/16	6,0	60,0	21,0	14,0	34,0	58814
0.1890	$4,801 \mathrm{~mm}$	\#12	6,0	65,0	22,0	14,0	33,0	58815
0.1929	$4,900 \mathrm{~mm}$		6,0	65,0	22,0	15,0	33,0	67724
0.1935	$4,915 \mathrm{~mm}$	\#10	6,0	65,0	22,0	15,0	33,0	58816
0.1969	$5,000 \mathrm{~mm}$		6,0	65,0	23,0	15,0	33,0	67725
0.2008	$5,100 \mathrm{~mm}$		6,0	65,0	23,0	15,0	33,0	67726
0.2010	$5,105 \mathrm{~mm}$	\#7	6,0	65,0	23,0	15,0	33,0	58817

TOLERANCES (inch)
S. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=\mathrm{h}_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

146U 3xD
FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \end{aligned}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { IS } \end{gathered}$	$\underset{(\mathrm{TX})}{\text { Ti-NAMITE}-X}$
0.2031	$5,159 \mathrm{~mm}$	13/64	6,0	65,0	23,0	15,0	33,0	58818
0.2047	$5,200 \mathrm{~mm}$		6,0	65,0	23,0	16,0	33,0	67727
0.2087	$5,300 \mathrm{~mm}$		6,0	65,0	24,0	16,0	33,0	67728
0.2090	5,309 mm	\#4	6,0	65,0	24,0	16,0	33,0	58819
0.2126	$5,400 \mathrm{~mm}$		6,0	65,0	24,0	16,0	33,0	67729
0.2130	$5,410 \mathrm{~mm}$	\#3	6,0	65,0	24,0	16,0	33,0	58820
0.2165	5,500 mm		6,0	65,0	25,0	16,0	33,0	67730
0.2188	$5,558 \mathrm{~mm}$	7/32	6,0	65,0	25,0	17,0	33,0	58821
0.2205	$5,600 \mathrm{~mm}$		6,0	65,0	25,0	17,0	33,0	67731
0.2244	5,700 mm		6,0	65,0	26,0	17,0	33,0	67732
0.2283	$5,800 \mathrm{~mm}$		6,0	65,0	26,0	17,0	33,0	67733
0.2323	$5,900 \mathrm{~mm}$		6,0	65,0	27,0	18,0	33,0	67734
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	65,0	27,0	18,0	33,0	58822
0.2362	6,000 mm		6,0	65,0	27,0	18,0	33,0	67735
0.2402	6,100 mm		8,0	70,0	28,0	19,0	34,0	67736
0.2441	6,200 mm		8,0	70,0	28,0	19,0	34,0	67737
0.2461	6,250 mm		8,0	70,0	28,0	19,0	34,0	67738
0.2480	6,300 mm		8,0	70,0	28,0	19,0	34,0	67739
0.2500	6,350 mm	1/4 E \#0	8,0	70,0	29,0	19,0	34,0	58823
0.2520	6,400 mm		8,0	70,0	29,0	19,0	34,0	67740
0.2559	6,500 mm		8,0	70,0	29,0	19,0	34,0	67741
0.2570	6,528 mm	F	8,0	70,0	29,0	20,0	34,0	58824
0.2598	6,600 mm		8,0	70,0	30,0	20,0	34,0	67742
0.2638	6,700 mm		8,0	70,0	30,0	20,0	34,0	67743
0.2656	6,746 mm	17/64	8,0	70,0	30,0	20,0	34,0	58825
0.2677	6,800 mm		8,0	70,0	31,0	20,0	34,0	67744
0.2717	6,900 mm		8,0	70,0	31,0	21,0	34,0	67745
0.2720	6,909 mm	I	8,0	70,0	31,0	21,0	34,0	58826
0.2756	7,000 mm		8,0	75,0	32,0	21,0	34,0	67746
0.2795	7,100 mm		8,0	75,0	32,0	21,0	34,0	67747
0.2812	7,142 mm	9/32	8,0	75,0	32,0	21,0	34,0	58827
0.2835	7,200 mm		8,0	75,0	32,0	22,0	34,0	67748
0.2854	$7,250 \mathrm{~mm}$		8,0	75,0	33,0	22,0	34,0	67749
0.2874	7,300 mm		8,0	75,0	33,0	22,0	34,0	67750
0.2913	$7,400 \mathrm{~mm}$		8,0	75,0	33,0	22,0	34,0	67751
0.2953	$7,500 \mathrm{~mm}$		8,0	75,0	34,0	23,0	34,0	67752
0.2969	$7,541 \mathrm{~mm}$	19/64	8,0	75,0	34,0	23,0	34,0	58828
0.2992	7,600 mm		8,0	75,0	34,0	23,0	34,0	67753
0.3031	7,700 mm		8,0	75,0	35,0	23,0	34,0	67754
0.3071	7,800 mm		8,0	75,0	35,0	23,0	34,0	67755
0.3110	7,900 mm		8,0	75,0	36,0	24,0	34,0	67756
0.3125	7,938 mm	5/16	8,0	75,0	36,0	24,0	34,0	58829
0.3150	$8,000 \mathrm{~mm}$		8,0	75,0	36,0	24,0	34,0	67757
0.3189	8,100 mm		10,0	80,0	36,0	24,0	34,0	67758
0.3228	$8,200 \mathrm{~mm}$		10,0	80,0	37,0	25,0	34,0	67759
0.3268	8,300 mm		10,0	80,0	37,0	25,0	34,0	67760
							ontinu	on next page

FRACTIONAL \& METRIC
Series 146U
Common

Reach

|nternal
Point Angle

FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface finish along with
increased dstrgntth for
aggressive drilling
- Specialized self-
centering notched point
eliminates the need for
spot drilling decreasing
thrust and deffection
- Engineered edge
protection improves edge
strength and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials ≤ 56 HRc
(577 Bhn)

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{(\mathrm{TX})}{\text { Ti-NAMITE }}$
0.3281	$8,334 \mathrm{~mm}$	21/64	10,0	80,0	38,0	25,0	34,0	58830
0.3307	$8,400 \mathrm{~mm}$		10,0	80,0	38,0	25,0	34,0	67761
0.3320	$8,433 \mathrm{~mm}$	0	10,0	80,0	38,0	25,0	34,0	58831
0.3346	$8,500 \mathrm{~mm}$		10,0	80,0	38,0	25,0	34,0	67762
0.3386	$8,600 \mathrm{~mm}$		10,0	80,0	39,0	26,0	34,0	67763
0.3425	$8,700 \mathrm{~mm}$		10,0	80,0	39,0	26,0	34,0	67764
0.3438	$8,733 \mathrm{~mm}$	11/32	10,0	80,0	39,0	26,0	34,0	58832
0.3465	$8,800 \mathrm{~mm}$		10,0	80,0	40,0	26,0	34,0	67765
0.3504	$8,900 \mathrm{~mm}$		10,0	80,0	40,0	27,0	34,0	67766
0.3543	$9,000 \mathrm{~mm}$		10,0	80,0	40,0	27,0	34,0	67767
0.3583	$9,100 \mathrm{~mm}$		10,0	80,0	41,0	27,0	34,0	67768
0.3594	9,129 mm	23/64	10,0	80,0	41,0	27,0	34,0	58833
0.3622	$9,200 \mathrm{~mm}$		10,0	80,0	41,0	28,0	35,0	67769
0.3661	9,300 mm		10,0	85,0	42,0	28,0	35,0	67770
0.3680	9,347 mm	U	10,0	85,0	42,0	28,0	35,0	58834
0.3701	$9,400 \mathrm{~mm}$		10,0	85,0	42,0	28,0	35,0	67771
0.3740	9,500 mm		10,0	85,0	43,0	28,0	35,0	67772
0.3750	9,525 mm	3/8	10,0	85,0	43,0	29,0	35,0	58835
0.3780	9,600 mm		10,0	85,0	43,0	29,0	35,0	67773
0.3819	9,700 mm		10,0	85,0	44,0	29,0	35,0	67774
0.3858	$9,800 \mathrm{~mm}$		10,0	85,0	44,0	29,0	35,0	67775
0.3898	9,900 mm		10,0	85,0	45,0	30,0	35,0	67776
0.3906	9,921 mm	25/64	10,0	85,0	45,0	30,0	35,0	58836
0.3937	10,000 mm		10,0	85,0	45,0	30,0	35,0	67777
0.3970	10,084 mm	X	12,0	90,0	46,0	31,0	36,0	58837
0.3976	10,100 mm		12,0	90,0	46,0	31,0	36,0	67778
0.4016	10,200 mm		12,0	90,0	46,0	31,0	36,0	67779
0.4040	10,262 mm	Y	12,0	90,0	46,0	31,0	36,0	58838
0.4055	10,300 mm		12,0	90,0	46,0	31,0	36,0	67780
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	90,0	46,0	31,0	36,0	58839
0.4094	$10,400 \mathrm{~mm}$		12,0	90,0	47,0	31,0	36,0	67781
0.4134	$10,500 \mathrm{~mm}$		12,0	90,0	47,0	32,0	36,0	67782
0.4173	$10,600 \mathrm{~mm}$		12,0	90,0	48,0	32,0	36,0	67783
0.4213	10,700 mm		12,0	90,0	48,0	32,0	36,0	67784
0.4219	10,716 mm	27/64	12,0	90,0	48,0	32,0	36,0	58840
0.4252	10,800 mm		12,0	90,0	49,0	32,0	36,0	67785
0.4291	$10,900 \mathrm{~mm}$		12,0	90,0	49,0	33,0	36,0	67786
0.4331	11,000 mm		12,0	95,0	50,0	33,0	36,0	67787

TOLERANCES (inch)
S. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC = +.00028/+.00098 DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGHTEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

\square
Common

Internal
Point Angle
Margins

- 4-margin design improves accuracy and surface finish along with increased strength for aggressive drilling
- Specialized selfcentering notched point eliminates the need for spot drilling decreasing thrust and deflection
- Engineered edge protection improves edge strength and reduces edge fatigue allowing for increased feed rates
- Recommended for materials ≤ 56 HRc (≤ 577 Bhn)

inch \& mm								EDP NO.
$\begin{gathered} \text { DECIMAL } \\ \text { DC } \end{gathered}$	METRIC DC	fractional/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{aligned} & \text { SHANK } \\ & \text { LENGTH } \\ & \text { LS } \end{aligned}$	$\begin{gathered} \text { Ti-NAMITE }{ }^{\circ}-\mathrm{X} \\ \hline \text { (TX) } \end{gathered}$
0.7656	19,446 mm	49/64	20,0	140,0	88,0	58,0	45,0	58862
0.7677	19,500 mm		20,0	140,0	88,0	58,0	45,0	67813
0.7812	$19,842 \mathrm{~mm}$	25/32	20,0	140,0	89,0	60,0	45,0	58863
0.7874	20,000 mm		20,0	140,0	90,0	60,0	45,0	67814
0.7969	20,241 mm	51/64	22,0	150,0	91,0	61,0	52,0	58864
0.8071	20,500 mm		22,0	150,0	92,0	62,0	52,0	67815
0.8125	20,638 mm	13/16	22,0	150,0	93,0	62,0	52,0	58865

TOLERANCES (inch)
≤ 1181 DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$
DCON = h_{6}
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$
DCON $=h_{6}$
>.7087-1.1811 DIAMETER
$D C=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 diameter
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS

STAINLESS STEELS

CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent

information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

TOLERANCES (inch)	inch \& mm								EDP NO.
$\begin{aligned} & \text { s. } 1181 \text { DIAMETER } \\ & \text { DC }=+.00008 /+.00047 \\ & \text { DCON }=h_{6} \end{aligned}$	$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{\text { (TX) }}{\text { Ti-NAMITE }-\mathrm{X}}$
	0.1181	$3,000 \mathrm{~mm}$		6,0	75,0	19,0	15,0	51,0	67816
$\begin{aligned} & >.1181-.2362 \text { DIAMETER } \\ & \text { DC }=+.00016 /+.00063 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1220	3,100 mm		6,0	80,0	20,0	15,0	49,0	67817
	0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	80,0	21,0	16,0	49,0	58866
	0.1260	$3,200 \mathrm{~mm}$		6,0	80,0	21,0	16,0	49,0	67818
```>.2362-.3937 DIAMETER DC =+.00024/+.00083 DCON = h6```	0.1299	$3,300 \mathrm{~mm}$		6,0	80,0	21,0	16,0	49,0	67819
	0.1339	$3,400 \mathrm{~mm}$		6,0	80,0	22,0	17,0	49,0	67820
	0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	80,0	22,0	17,0	49,0	58867
```>.3937-.7087 DIAMETER DC =+.00028/+.00098 DCON = h6```	0.1378	3,500 mm		6,0	80,0	23,0	18,0	49,0	67821
	0.1405	3,569 mm	\#28	6,0	80,0	23,0	18,0	49,0	58868
	0.1406	3,571 mm	9/64	6,0	80,0	23,0	18,0	49,0	58869
```>.7087-1.1811 DIAMETER DC = +.00031/+.00114 DCON = h6```	0.1417	3,600 mm		6,0	80,0	23,0	18,0	49,0	67822
	0.1457	3,700 mm		6,0	80,0	24,0	19,0	49,0	67823
	0.1470	3,734 mm	\#26	6,0	80,0	24,0	19,0	49,0	58870
	0.1495	3,797 mm	\#25	6,0	80,0	25,0	19,0	49,0	58871
TOLERANCES (mm)	0.1496	$3,800 \mathrm{~mm}$		6,0	80,0	25,0	19,0	49,0	67824
$\begin{aligned} & \leq 3 \text { DIAMETER } \\ & \text { DC } \quad=+0,002 /+0,012 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1520	$3,861 \mathrm{~mm}$	\#24	6,0	80,0	25,0	19,0	49,0	58872
	0.1535	3,900 mm		6,0	80,0	25,0	19,0	49,0	67825
	0.1562	3,967 mm	5/32	6,0	80,0	26,0	20,0	49,0	58873
$\begin{aligned} & >3-6 \text { DIAMETER } \\ & \text { DC }=+0,004 /+0,016 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1570	3,988 mm	\#22	6,0	80,0	26,0	20,0	49,0	58874
	0.1575	$4,000 \mathrm{~mm}$		6,0	80,0	26,0	20,0	49,0	67826
	0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	80,0	26,0	20,0	49,0	58875
>6-10 DIAMETER   DC $=+0,006 /+0,021$   DCON $=\mathrm{h}_{6}$	0.1610	4,089 mm	\#20	6,0	90,0	27,0	20,0	53,0	58876
	0.1614	$4,100 \mathrm{~mm}$		6,0	90,0	27,0	20,0	53,0	67827
	0.1654	4,200 mm		6,0	90,0	27,0	21,0	53,0	67828
$\begin{aligned} & >10-18 \text { DIAMETER } \\ & \text { DC }=+0,007 /+0,025 \\ & \text { DCON }=\mathrm{h}_{6} \end{aligned}$	0.1693	$4,300 \mathrm{~mm}$		6,0	90,0	28,0	22,0	53,0	67829
	0.1719	4,366 mm	11/64	6,0	90,0	28,0	22,0	53,0	58877
	0.1732	$4,400 \mathrm{~mm}$		6,0	90,0	29,0	22,0	53,0	67830
	0.1770	4,496 mm	\#16	6,0	90,0	29,0	22,0	53,0	58878
>18-30 diameter$\text { DC } \quad=+0,008 /+0,029$$D C O N=h_{6}$	0.1772	$4,500 \mathrm{~mm}$		6,0	90,0	29,0	23,0	53,0	67831
	0.1811	4,600 mm		6,0	90,0	30,0	23,0	53,0	67832
	0.1850	4,699 mm	\#13	6,0	90,0	31,0	23,0	53,0	58879
STEELS	0.1875	4,763 mm	3/16	6,0	90,0	31,0	24,0	53,0	58880
	0.1890	4,801 mm	\#12	6,0	90,0	31,0	24,0	53,0	58881
STAINLESS STEELS	0.1929	4,900 mm		6,0	90,0	32,0	24,0	53,0	67835
	0.1935	$4,915 \mathrm{~mm}$	\#10	6,0	90,0	32,0	25,0	53,0	58882
CASTIRON	0.1969	5,000 mm		6,0	95,0	33,0	25,0	51,0	67836
HIGHTEMP ALLOYS	0.2008	5,100 mm		6,0	95,0	33,0	26,0	51,0	67837
NON-FERROUS	0.2010	5,105 mm	\#7	6,0	95,0	33,0	26,0	51,0	58883
	0.2031	5,159 mm	13/64	6,0	95,0	34,0	26,0	51,0	58884
For patent information visit www.ksptpatents.com	0.2047	5,200 mm		6,0	95,0	34,0	26,0	51,0	67838
	0.2087	5,300 mm		6,0	95,0	34,0	27,0	51,0	67839
	0.2090	$5,309 \mathrm{~mm}$	\#4	6,0	95,0	35,0	27,0	51,0	58885

- 4-margin design improves accuracy and surface finish along with increased strength for aggressive drilling
- Specialized selfcentering notched point eliminates the need for spot drilling decreasing thrust and deflection
- Engineered edge protection improves edge strength and reduces edge fatigue allowing for increased feed rates
- Recommended for materials $\leq 56 \mathrm{HRc}$ ( $\leq 577$ Bhn)

FRACTIONAL \& METRIC
Series 146U

$\square$
Common

Reach

Internal
Point Angle
Margins


FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface fininh along with
increased strength for
aggressive drilling
- Specialized self-
centering notched point
eliminates the need for
spon drilling decreasing
thrust and deflection
- Engineered edge
protection improves edge
stronth and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials $\leq 56$ HRc
( $\leq 577$ Bhn)


inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \\ & \text { LCF } \end{aligned}$	USABLE   LENGTH   LU	SHANK LENGTH LS	
0.2126	$5,400 \mathrm{~mm}$		6,0	95,0	35,0	27,0	51,0	67840
0.2130	$5,410 \mathrm{~mm}$	\#3	6,0	95,0	35,0	27,0	51,0	58886
0.2165	$5,500 \mathrm{~mm}$		6,0	95,0	36,0	27,0	51,0	67841
0.2188	5,558 mm	7/32	6,0	95,0	36,0	28,0	51,0	58887
0.2205	$5,600 \mathrm{~mm}$		6,0	95,0	36,0	28,0	51,0	67842
0.2244	$5,700 \mathrm{~mm}$		6,0	95,0	37,0	28,0	51,0	67843
0.2283	$5,800 \mathrm{~mm}$		6,0	95,0	38,0	29,0	51,0	67844
0.2323	5,900 mm		6,0	95,0	38,0	30,0	51,0	67845
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	95,0	39,0	30,0	51,0	58888
0.2362	6,000 mm		6,0	95,0	39,0	30,0	51,0	67846
0.2402	6,100 mm		8,0	100,0	40,0	31,0	49,0	67847
0.2441	6,200 mm		8,0	100,0	40,0	31,0	49,0	67848
0.2461	6,250 mm		8,0	100,0	41,0	31,0	49,0	67849
0.2480	6,300 mm		8,0	100,0	41,0	31,0	49,0	67850
0.2500	6,350 mm	1/4E \#0	8,0	100,0	41,0	32,0	49,0	58889
0.2520	6,400 mm		8,0	100,0	42,0	32,0	49,0	67851
0.2559	6,500 mm		8,0	100,0	42,0	32,0	49,0	67852
0.2570	6,528 mm	F	8,0	100,0	42,0	33,0	49,0	58890
0.2598	6,600 mm		8,0	100,0	43,0	33,0	49,0	67853
0.2638	6,700 mm		8,0	100,0	44,0	34,0	49,0	67854
0.2656	6,746 mm	17/64	8,0	100,0	44,0	34,0	49,0	58891
0.2677	6,800 mm		8,0	100,0	44,0	34,0	49,0	67855
0.2717	6,900 mm		8,0	100,0	45,0	35,0	49,0	67856
0.2720	6,909 mm	1	8,0	100,0	45,0	35,0	49,0	58892
0.2756	7,000 mm		8,0	100,0	46,0	35,0	49,0	67857
0.2795	7,100 mm		8,0	100,0	46,0	35,0	49,0	67858
0.2812	7,142 mm	9/32	8,0	100,0	46,0	36,0	49,0	58893
0.2835	7,200 mm		8,0	110,0	47,0	36,0	53,0	67859
0.2854	7,250 mm		8,0	110,0	47,0	36,0	53,0	67860
0.2874	7,300 mm		8,0	110,0	47,0	36,0	53,0	67861
0.2913	7,400 mm		8,0	110,0	48,0	37,0	53,0	67862
0.2953	7,500 mm		8,0	110,0	49,0	38,0	53,0	67863
0.2969	7,541 mm	19/64	8,0	110,0	49,0	38,0	53,0	58894
0.2992	7,600 mm		8,0	110,0	49,0	38,0	53,0	67864
0.3031	7,700 mm		8,0	110,0	50,0	38,0	53,0	67865
0.3071	7,800 mm		8,0	110,0	51,0	39,0	53,0	67866
0.3110	$7,900 \mathrm{~mm}$		8,0	110,0	51,0	39,0	53,0	67867
0.3125	7,938 mm	5/16	8,0	110,0	52,0	40,0	53,0	58895
0.3150	$8,000 \mathrm{~mm}$		8,0	110,0	52,0	40,0	53,0	67868
0.3189	$8,100 \mathrm{~mm}$		10,0	115,0	53,0	41,0	51,0	67869
0.3228	$8,200 \mathrm{~mm}$		10,0	115,0	53,0	41,0	51,0	67870
0.3268	8,300 mm		10,0	115,0	54,0	42,0	51,0	67871
							continue	on next page

TOLERANCES (inch)
$\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
$\leq 3$ diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 diameter
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGHTEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.	CONTINUED
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL   LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{(\mathrm{TX})}{\text { Ti-NAMITE }-\mathrm{X}}$	
0.3281	8,334 mm	21/64	10,0	115,0	54,0	42,0	51,0	58896	
0.3307	8,400 mm		10,0	115,0	55,0	42,0	51,0	67872	
0.3320	8,433 mm	0	10,0	115,0	55,0	42,0	51,0	58897	
0.3346	8,500 mm		10,0	115,0	55,0	42,0	51,0	67873	
0.3386	$8,600 \mathrm{~mm}$		10,0	115,0	56,0	43,0	51,0	67874	
0.3425	8,700 mm		10,0	115,0	57,0	43,0	51,0	67875	
0.3438	8,733 mm	11/32	10,0	115,0	57,0	44,0	51,0	58898	
0.3465	8,800 mm		10,0	115,0	57,0	44,0	51,0	67876	
0.3504	$8,900 \mathrm{~mm}$		10,0	115,0	58,0	45,0	51,0	67877	
0.3543	9,000 mm		10,0	115,0	58,0	45,0	51,0	67878	
0.3583	9,100 mm		10,0	115,0	59,0	46,0	51,0	67879	
0.3594	9,129 mm	23/64	10,0	115,0	59,0	46,0	51,0	58899	
0.3622	9,200 mm		10,0	125,0	60,0	46,0	55,0	67880	
0.3661	9,300 mm		10,0	125,0	60,0	46,0	55,0	67881	
0.3680	9,347 mm	U	10,0	125,0	61,0	47,0	55,0	58900	
0.3701	9,400 mm		10,0	125,0	61,0	47,0	55,0	67882	
0.3740	9,500 mm		10,0	125,0	62,0	47,0	55,0	67883	
0.3750	9,525 mm	3/8	10,0	125,0	62,0	48,0	55,0	58901	
0.3780	9,600 mm		10,0	125,0	62,0	48,0	55,0	67884	
0.3819	9,700 mm		10,0	125,0	63,0	49,0	55,0	67885	
0.3858	9,800 mm		10,0	125,0	64,0	49,0	55,0	67886	
0.3898	9,900 mm		10,0	125,0	64,0	50,0	55,0	67887	
0.3906	9,921 mm	25/64	10,0	125,0	64,0	50,0	55,0	58902	
0.3937	$10,000 \mathrm{~mm}$		10,0	125,0	65,0	50,0	55,0	67888	
0.3970	10,084 mm	X	12,0	135,0	66,0	50,0	57,0	58903	
0.3976	10,100 mm		12,0	135,0	66,0	50,0	57,0	67889	
0.4016	10,200 mm		12,0	135,0	66,0	51,0	57,0	67890	
0.4040	10,262 mm	Y	12,0	135,0	67,0	51,0	57,0	58904	
0.4055	10,300 mm		12,0	135,0	67,0	51,0	57,0	67891	
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	135,0	67,0	52,0	57,0	58905	
0.4094	$10,400 \mathrm{~mm}$		12,0	135,0	68,0	52,0	57,0	67892	
0.4134	10,500 mm		12,0	135,0	68,0	53,0	57,0	67893	
0.4173	$10,600 \mathrm{~mm}$		12,0	135,0	69,0	53,0	57,0	67894	
0.4213	10,700 mm		12,0	135,0	70,0	54,0	57,0	67895	
0.4219	10,716 mm	27/64	12,0	135,0	70,0	54,0	57,0	58906	
0.4252	10,800 mm		12,0	135,0	70,0	54,0	57,0	67896	
0.4291	$10,900 \mathrm{~mm}$		12,0	135,0	71,0	54,0	57,0	67897	
0.4331	$11,000 \mathrm{~mm}$		12,0	135,0	72,0	55,0	57,0	67898	
0.4370	$11,100 \mathrm{~mm}$		12,0	135,0	72,0	55,0	57,0	67899	
0.4375	11,113 mm	7/16	12,0	135,0	72,0	56,0	57,0	58907	
0.4409	$11,200 \mathrm{~mm}$		12,0	135,0	73,0	56,0	57,0	67900	
0.4449	$11,300 \mathrm{~mm}$		12,0	135,0	73,0	57,0	57,0	67901	
0.4488	$11,400 \mathrm{~mm}$		12,0	145,0	74,0	57,0	62,0	67902	
0.4528	11,500 mm		12,0	145,0	75,0	58,0	62,0	67903	
0.4531	$11,509 \mathrm{~mm}$	29/64	12,0	145,0	75,0	58,0	62,0	58908	
0.4567	$11,600 \mathrm{~mm}$		12,0	145,0	75,0	58,0	62,0	67904	
0.4606	11,700 mm		12,0	145,0	76,0	58,0	62,0	67905	
0.4646	$11,800 \mathrm{~mm}$		12,0	145,0	77,0	59,0	62,0	67906	
0.4685	$11,900 \mathrm{~mm}$		12,0	145,0	77,0	59,0	62,0	67907	
0.4688	11,908 mm	15/32	12,0	145,0	77,0	60,0	62,0	58909	
							continued on next page		

FRACTIONAL \& METRIC
Series 146U

$\square$
Common

Internal
Point Angle
Margins


FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface finish along with
increased strenth for
aggressive dirling
- Speciailizeds self-
centering notched point
eliminates the need for
spot drilling decereasing
thrust and deflection
- Engineered edge
protection inproves edge
strenth and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials $\leq 56$ HRc
( $\leq 577$ Bhn)


inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGGH } \\ \text { LS } \end{gathered}$	$\underset{(\mathrm{TX})}{\text { Ti-NAMITE }}$
0.4724	$12,000 \mathrm{~mm}$		12,0	145,0	78,0	60,0	62,0	67908
0.4844	12,304 mm	31/64	14,0	155,0	80,0	62,0	59,0	58910
0.4921	$12,500 \mathrm{~mm}$		14,0	155,0	81,0	62,0	59,0	67909
0.5000	12,700 mm	1/2	14,0	155,0	83,0	64,0	59,0	58911
0.5039	$12,800 \mathrm{~mm}$		14,0	155,0	83,0	64,0	59,0	67910
0.5118	$13,000 \mathrm{~mm}$		14,0	155,0	84,0	65,0	59,0	67911
0.5156	$13,096 \mathrm{~mm}$	33/64	14,0	155,0	85,0	65,0	59,0	58912
0.5312	13,492 mm	17/32	14,0	155,0	88,0	67,0	59,0	58913
0.5315	$13,500 \mathrm{~mm}$		14,0	155,0	88,0	68,0	59,0	67912
0.5469	13,891 mm	35/64	14,0	155,0	90,0	69,0	59,0	58914
0.5512	$14,000 \mathrm{~mm}$		14,0	155,0	91,0	70,0	59,0	67913
0.5625	14,288 mm	9/16	16,0	175,0	93,0	71,0	66,0	58915
0.5709	$14,500 \mathrm{~mm}$		16,0	175,0	94,0	73,0	66,0	67914
0.5781	$14,684 \mathrm{~mm}$	37/64	16,0	175,0	95,0	73,0	66,0	58916
0.5906	$15,000 \mathrm{~mm}$		16,0	175,0	98,0	75,0	66,0	67915
0.5938	15,083 mm	19/32	16,0	175,0	98,0	75,0	66,0	58917
0.6094	$15,479 \mathrm{~mm}$	39/64	16,0	175,0	101,0	77,0	66,0	58918
0.6102	15,500 mm		16,0	175,0	101,0	77,0	66,0	67916
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	175,0	103,0	79,0	66,0	58919
0.6299	16,000 mm		16,0	175,0	104,0	80,0	66,0	67917
0.6406	16,271 mm	41/64	18,0	195,0	106,0	81,0	73,0	58920
0.6496	16,500 mm		18,0	195,0	107,0	82,0	73,0	67918
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	195,0	108,0	83,0	73,0	58921
0.6693	17,000 mm		18,0	195,0	111,0	85,0	73,0	67919
0.6719	17,066 mm	43/64	18,0	195,0	111,0	85,0	73,0	58922
0.6875	17,463 mm	11/16	18,0	195,0	114,0	87,0	73,0	58923
0.6890	$17,500 \mathrm{~mm}$		18,0	195,0	114,0	88,0	73,0	67920
0.7031	17,859 mm	45/64	18,0	195,0	116,0	89,0	73,0	58924
0.7087	$18,000 \mathrm{~mm}$		18,0	195,0	117,0	90,0	73,0	67921
0.7188	18,258 mm	23/32	20,0	215,0	119,0	91,0	80,0	58925
0.7283	18,500 mm		20,0	215,0	120,0	92,0	80,0	67922
0.7344	18,654 mm	47/64	20,0	215,0	121,0	93,0	80,0	58926
0.7480	19,000 mm		20,0	215,0	123,0	95,0	80,0	67923
0.7500	19,050 mm	3/4	20,0	215,0	124,0	95,0	80,0	58927
0.7656	19,446 mm	49/64	20,0	215,0	126,0	97,0	80,0	58928
0.7677	19,500 mm		20,0	215,0	127,0	97,0	80,0	67924
0.7812	19,842 mm	25/32	20,0	215,0	129,0	99,0	80,0	58929
0.7874	20,000 mm		20,0	215,0	130,0	100,0	80,0	67925
0.7969	20,241 mm	51/64	22,0	220,0	132,0	101,0	81,0	58930
0.8071	20,500 mm		22,0	220,0	133,0	103,0	81,0	67926
0.8125	20,638 mm	13/16	22,0	220,0	134,0	103,0	81,0	58931

TOLERANCES (inch) S. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
$\leq 3$ diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 diameter
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com


136U 2xD
FRACTIONAL \& METRIC SERIES

## TOLERANCES (inch)

s. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=\mathrm{h}_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$
DCON $=\mathrm{h}_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm)
$\leq 3$ DIAMETER
DC $=+0,002 /+0,012$ DCON $=\mathrm{h}_{6}$
$>3-6$ DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
$>6$ - 10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$ DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS	
	STAINLESS STEELS
	CAST IRON
	HIGH TEMP ALLOYS
	NON-FERROUS

For patent
information visit www.ksptpatents.com


inch \& mm								EDP NO.	- 4-margin design improves accuracy and surface finish along with increased strength for aggressive drilling
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	$\begin{aligned} & \text { USABLE } \\ & \text { LENGTH } \end{aligned}$ LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{\text { (TX) }}{\text { Ti-NAMITE®-X }}$	
0.0591	1,500 mm		6,0	45,0	5,0	3,0	33,0	67060	
0.0625	1,588 mm	1/16	6,0	45,0	6,0	3,0	33,0	58480	- Specialized self-
0.0630	$1,600 \mathrm{~mm}$		6,0	45,0	6,0	3,0	33,0	67061	eliminates the need for
0.0669	1,700 mm		6,0	45,0	6,0	3,0	33,0	67062	spot drilling decreasing thrust and deflection
0.0709	1,800 mm		6,0	45,0	6,0	4,0	33,0	67063	- Engineered edge
0.0748	1,900 mm		6,0	45,0	7,0	4,0	33,0	67064	protection improves
0.0781	1,984 mm	5/64	6,0	45,0	7,0	4,0	33,0	58481	reduces edge fatigue
0.0787	2,000 mm		6,0	45,0	7,0	4,0	33,0	67065	allowing for increased feed rates
0.0827	2,100 mm		6,0	45,0	7,0	4,0	33,0	67066	- Recommended fa
0.0866	2,200 mm		6,0	50,0	8,0	4,0	31,0	67067	materials $\leq 56 \mathrm{HRc}$
0.0906	2,300 m		6,0	50,0	8,0	5,0	31,0	67068	

FRACTIONAL \& METRIC
Series 136U



FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggressive drilling
- Specialized self-
centering notched point
eliminates the need for
spot drilling decreasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials $\leq 56 ~ H R c$
( $\leq 577$ Bhn)


inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE   LENGTH   LU	SHANK LENGTH LS	$\underset{\text { (TX) }}{\text { Ti-NAMITE }-X ~}$
0.1520	3,861 mm	\#24	6,0	50,0	14,0	8,0	31,0	58494
0.1535	3,900 mm		6,0	50,0	14,0	8,0	31,0	67084
0.1562	3,967 mm	5/32	6,0	50,0	14,0	8,0	31,0	58495
0.1570	3,988 mm	\#22	6,0	50,0	14,0	8,0	31,0	58496
0.1575	4,000 mm		6,0	50,0	14,0	8,0	31,0	67085
0.1590	4,039 mm	\#21	6,0	50,0	14,0	8,0	31,0	58497
0.1610	$4,089 \mathrm{~mm}$	\#20	6,0	50,0	14,0	8,0	31,0	58498
0.1614	4,100 mm		6,0	50,0	14,0	8,0	31,0	67086
0.1654	4,200 mm		6,0	60,0	15,0	8,0	34,0	67087
0.1693	4,300 mm		6,0	60,0	15,0	9,0	34,0	67088
0.1719	4,366 mm	11/64	6,0	60,0	15,0	9,0	34,0	58499
0.1732	4,400 mm		6,0	60,0	15,0	9,0	34,0	67089
0.1770	$4,496 \mathrm{~mm}$	\#16	6,0	60,0	16,0	9,0	34,0	58500
0.1772	4,500 mm		6,0	60,0	16,0	9,0	34,0	67090
0.1811	4,600 mm		6,0	60,0	16,0	9,0	34,0	67091
0.1850	4,699 mm	\#13	6,0	60,0	16,0	9,0	34,0	58501
0.1875	4,763 mm	3/16	6,0	60,0	17,0	10,0	34,0	58502
0.1890	4,801 mm	\#12	6,0	60,0	17,0	10,0	34,0	58503
0.1929	$4,900 \mathrm{~mm}$		6,0	60,0	17,0	10,0	34,0	67094
0.1935	4,915 mm	\#10	6,0	60,0	17,0	10,0	34,0	58504
0.1969	$5,000 \mathrm{~mm}$		6,0	60,0	18,0	10,0	34,0	67095
0.2008	$5,100 \mathrm{~mm}$		6,0	60,0	18,0	10,0	34,0	67096
0.2010	$5,105 \mathrm{~mm}$	\#7	6,0	60,0	18,0	10,0	34,0	58505
0.2031	5,159 mm	13/64	6,0	60,0	18,0	10,0	34,0	58506
0.2047	5,200 mm		6,0	60,0	18,0	10,0	34,0	67097
0.2087	$5,300 \mathrm{~mm}$		6,0	60,0	19,0	11,0	34,0	67098
0.2090	$5,309 \mathrm{~mm}$	\#4	6,0	60,0	19,0	11,0	34,0	58507
0.2126	$5,400 \mathrm{~mm}$		6,0	60,0	19,0	11,0	34,0	67099
0.2130	$5,410 \mathrm{~mm}$	\#3	6,0	60,0	19,0	11,0	34,0	58508
0.2165	5,500 mm		6,0	60,0	19,0	11,0	34,0	67100
0.2188	$5,558 \mathrm{~mm}$	7/32	6,0	60,0	19,0	11,0	34,0	58509
0.2205	$5,600 \mathrm{~mm}$		6,0	60,0	20,0	11,0	34,0	67101
0.2244	$5,700 \mathrm{~mm}$		6,0	60,0	20,0	11,0	34,0	67102
0.2283	$5,800 \mathrm{~mm}$		6,0	60,0	20,0	12,0	34,0	67103
0.2323	$5,900 \mathrm{~mm}$		6,0	60,0	21,0	12,0	34,0	67104
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	60,0	21,0	12,0	34,0	58510
0.2362	6,000 mm		6,0	60,0	21,0	12,0	34,0	67105
0.2402	6,100 mm		8,0	70,0	22,0	13,0	37,0	67106
0.2441	6,200 mm		8,0	70,0	22,0	12,0	37,0	67107
0.2461	$6,250 \mathrm{~mm}$		8,0	70,0	22,0	13,0	37,0	67108

TOLERANCES (inch) <. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$
DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm)
$\leq 3$ diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC = +0,004/+0,016
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \end{gathered}$	$\begin{aligned} & \text { USABLE } \\ & \text { LENGTH } \end{aligned}$ LU	$\begin{gathered} \text { SHANK } \\ \text { LENGGH } \\ \text { LS } \end{gathered}$	$\underset{\text { (TX) }}{\text { Ti-NAMITE }-X ~}$
0.2480	6,300 mm		8,0	70,0	22,0	13,0	37,0	67109
0.2500	6,350 mm	1/4E \#0	8,0	70,0	22,0	13,0	37,0	58511
0.2520	6,400 mm		8,0	70,0	22,0	13,0	37,0	67110
0.2559	6,500 mm		8,0	70,0	23,0	13,0	37,0	67111
0.2570	6,528 mm	F	8,0	70,0	23,0	13,0	37,0	58512
0.2598	6,600 mm		8,0	70,0	23,0	13,0	37,0	67112
0.2638	6,700 mm		8,0	70,0	23,0	13,0	37,0	67113
0.2656	6,746 mm	17/64	8,0	70,0	24,0	13,0	37,0	58513
0.2677	6,800 mm		8,0	70,0	24,0	14,0	37,0	67114
0.2717	6,900 mm		8,0	70,0	24,0	14,0	37,0	67115
0.2720	6,909 mm	1	8,0	70,0	24,0	14,0	37,0	58514
0.2756	7,000 mm		8,0	70,0	25,0	14,0	37,0	67116
0.2795	7,100 mm		8,0	70,0	25,0	14,0	37,0	67117
0.2812	7,142 mm	9/32	8,0	70,0	25,0	14,0	37,0	58515
0.2835	7,200 mm		8,0	70,0	25,0	14,0	37,0	67118
0.2854	7,250 mm		8,0	70,0	25,0	14,0	37,0	67119
0.2874	7,300 mm		8,0	70,0	26,0	15,0	37,0	67120
0.2913	7,400 mm		8,0	70,0	26,0	15,0	37,0	67121
0.2953	7,500 mm		8,0	70,0	26,0	15,0	37,0	67122
0.2969	7,541 mm	19/64	8,0	70,0	26,0	15,0	37,0	58516
0.2992	7,600 mm		8,0	70,0	27,0	15,0	37,0	67123
0.3031	7,700 mm		8,0	70,0	27,0	15,0	37,0	67124
0.3071	7,800 mm		8,0	70,0	27,0	16,0	37,0	67125
0.3110	7,900 mm		8,0	70,0	28,0	16,0	37,0	67126
0.3125	7,938 mm	5/16	8,0	70,0	28,0	16,0	37,0	58517
0.3150	8,000 mm		8,0	70,0	28,0	16,0	37,0	67127
0.3189	8,100 mm		10,0	80,0	29,0	17,0	40,0	67128
0.3228	8,200 mm		10,0	80,0	29,0	16,0	40,0	67129
0.3268	8,300 mm		10,0	80,0	29,0	17,0	40,0	67130
0.3281	8,334 mm	21/64	10,0	80,0	29,0	17,0	40,0	58518
0.3307	$8,400 \mathrm{~mm}$		10,0	80,0	29,0	17,0	40,0	67131
0.3320	$8,433 \mathrm{~mm}$	0	10,0	80,0	30,0	17,0	40,0	58519
0.3346	8,500 mm		10,0	80,0	30,0	17,0	40,0	67132
0.3386	$8,600 \mathrm{~mm}$		10,0	80,0	30,0	17,0	40,0	67133
0.3425	$8,700 \mathrm{~mm}$		10,0	80,0	30,0	17,0	40,0	67134
0.3438	8,733 mm	11/32	10,0	80,0	31,0	17,0	40,0	58520
0.3465	8,800 mm		10,0	80,0	31,0	18,0	40,0	67135
0.3504	8,900 mm		10,0	80,0	31,0	18,0	40,0	67136
0.3543	9,000 mm		10,0	80,0	31,0	18,0	40,0	67137
0.3583	9,100 mm		10,0	80,0	32,0	18,0	40,0	67138
0.3594	9,129 mm	23/64	10,0	80,0	32,0	18,0	40,0	58521
0.3622	9,200 mm		10,0	80,0	32,0	18,0	40,0	67139
0.3661	9,300 mm		10,0	80,0	33,0	19,0	40,0	67140
0.3680	9,347 mm	U	10,0	80,0	33,0	19,0	40,0	58522
0.3701	$9,400 \mathrm{~mm}$		10,0	80,0	33,0	19,0	40,0	67141
0.3740	9,500 mm		10,0	80,0	33,0	19,0	40,0	67142
							continued	on next page

FRACTIONAL \& METRIC
Series 136U
Common

Point Angle


FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggeressive drilling
- Specialized self-
centering notched point
eliminates the need for
spot drilling decreasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials $\leq 56$ HRic
( $\leq 577$ Bhn)


inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE   LENGTH   LU	$\begin{aligned} & \text { SHANK } \\ & \text { LENGTH } \end{aligned}$ LS	$\underset{(T X)}{\text { Ti-NAMITE®-X }}$
0.3750	9,525 mm	3/8	10,0	80,0	33,0	19,0	40,0	58523
0.3780	9,600 mm		10,0	80,0	34,0	19,0	40,0	67143
0.3819	9,700 mm		10,0	80,0	34,0	19,0	40,0	67144
0.3858	9,800 mm		10,0	80,0	34,0	20,0	40,0	67145
0.3898	9,900 mm		10,0	80,0	35,0	20,0	40,0	67146
0.3906	9,921 mm	25/64	10,0	80,0	35,0	20,0	40,0	58524
0.3937	$10,000 \mathrm{~mm}$		10,0	80,0	35,0	20,0	40,0	67147
0.3970	10,084 mm	X	12,0	90,0	36,0	21,0	43,0	58525
0.3976	10,100 mm		12,0	90,0	36,0	21,0	43,0	67148
0.4016	10,200 mm		12,0	90,0	36,0	20,0	43,0	67149
0.4040	10,262 mm	Y	12,0	90,0	36,0	21,0	43,0	58526
0.4055	10,300 mm		12,0	90,0	36,0	21,0	43,0	67150
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	90,0	36,0	21,0	43,0	58527
0.4094	$10,400 \mathrm{~mm}$		12,0	90,0	36,0	21,0	43,0	67151
0.4134	10,500 mm		12,0	90,0	37,0	21,0	43,0	67152
0.4173	10,600 mm		12,0	90,0	37,0	21,0	43,0	67153
0.4213	10,700 mm		12,0	90,0	37,0	21,0	43,0	67154
0.4219	10,716 mm	27/64	12,0	90,0	38,0	21,0	43,0	58528
0.4252	10,800 mm		12,0	90,0	38,0	22,0	43,0	67155
0.4291	10,900 mm		12,0	90,0	38,0	22,0	43,0	67156
0.4331	$11,000 \mathrm{~mm}$		12,0	90,0	39,0	22,0	43,0	67157
0.4370	11,100 mm		12,0	90,0	39,0	22,0	43,0	67158
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	90,0	39,0	22,0	43,0	58529
0.4409	$11,200 \mathrm{~mm}$		12,0	90,0	39,0	22,0	43,0	67159
0.4449	$11,300 \mathrm{~mm}$		12,0	90,0	40,0	23,0	43,0	67160
0.4488	$11,400 \mathrm{~mm}$		12,0	90,0	40,0	23,0	43,0	67161
0.4528	$11,500 \mathrm{~mm}$		12,0	90,0	40,0	23,0	43,0	67162
0.4531	$11,509 \mathrm{~mm}$	29/64	12,0	90,0	40,0	23,0	43,0	58530
0.4567	$11,600 \mathrm{~mm}$		12,0	90,0	41,0	23,0	43,0	67163
0.4606	$11,700 \mathrm{~mm}$		12,0	90,0	41,0	23,0	43,0	67164
0.4646	$11,800 \mathrm{~mm}$		12,0	90,0	41,0	24,0	43,0	67165
0.4685	$11,900 \mathrm{~mm}$		12,0	90,0	42,0	24,0	43,0	67166
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	90,0	42,0	24,0	43,0	58531
0.4724	$12,000 \mathrm{~mm}$		12,0	90,0	42,0	24,0	43,0	67167
0.4844	$12,304 \mathrm{~mm}$	31/64	14,0	100,0	43,0	25,0	46,0	58532
0.4921	$12,500 \mathrm{~mm}$		14,0	100,0	44,0	25,0	46,0	67168
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	100,0	44,0	25,0	46,0	58533
0.5039	12,800 mm		14,0	100,0	45,0	26,0	46,0	67169


\section*{TOLERANCES (inch) <. 1181 DIAMETER <br> DC $=+.00008 /+.00047$ DCON $=h_{6}$ <br> >.1181-. 2362 DIAMETER <br> DC $=+.00016 /+.00063$ DCON $=h_{6}$ <br> >.2362-. 3937 DIAMETER <br> DC $=+.00024 /+.00083$ DCON $=h_{6}$ <br> >.3937-. 7087 DIAMETER <br> DC $=+.00028 /+.00098$ <br> DCON $=h_{6}$ <br> >.7087-1.1811 DIAMETER <br> DC $=+.00031 /+.00114$ <br> DCON $=h_{6}$ <br> TOLERANCES (mm) <br> $\leq 3$ diameter <br> DC $=+0,002 /+0,012$ <br> DCON $=h_{6}$ <br> >3-6 DIAMETER <br> DC = +0,004/+0,016 <br> DCON $=h_{6}$ <br> >6-10 DIAMETER <br> DC $=+0,006 /+0,021$ <br> DCON $=h_{6}$ <br> >10-18 DIAMETER <br> DC $=+0,007 /+0,025$ <br> DCON $=h_{6}$ <br> >18-30 diameter <br> DC $=+0,008 /+0,029$ <br> DCON $=h_{6}$ <br> | STEELS |
| :--- |
| STAINLESS STEELS |
| CAST IRON |
| NON-FERROUS |
| HIGH TEMP ALLOYS |
| HARDENED STEELS |}

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

|  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

FRACTIONAL
Series 146U • Series 136U

	Series 146U, 136U Fractional	Hardness	$\begin{gathered} \mathrm{Vc}_{\mathrm{c}} \\ (\mathrm{sfm}) \end{gathered}$		DC•in							
					1/16	1/8	1/4	3/8	1/2	5/8	3/4	13/16
	CARBON STEELS   1018, 1040, 1080, 1090, 10L50,   1140, 1212, 12L15, 1525, 1536	$\begin{aligned} & \leq 175 \mathrm{Bhn} \\ & \text { or } \\ & \leq 7 \mathrm{HRc} \end{aligned}$	285	RPM	17419	8710	4355	2903	2177	1742	1452	1340
			(228-342)	Fr	0.0016	0.0031	0.0062	0.0093	0.0124	0.0155	0.0186	0.0202
				Feed (ipm)	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	255	RPM	15586	7793	3896	2598	1948	1559	1299	1199
			(204-306)	Fr	0.0013	0.0027	0.0054	0.0081	0.0108	0.0135	0.0162	0.0175
				Feed (ipm)	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
		$\begin{gathered} \leq 425 \mathrm{Bhn} \\ \text { or } \\ \leq 45 \mathrm{HRc} \end{gathered}$	145	RPM	8862	4431	2216	1477	1108	886	739	682
			(116-174)	Fr	0.0011	0.0023	0.0045	0.0068	0.0090	0.0113	0.0135	0.0147
				Feed (ipm)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	220	RPM	13446	6723	3362	2241	1681	1345	1121	1034
P			(176-264)	Fr	0.0015	0.0030	0.0059	0.0089	0.0119	0.0149	0.0178	0.0193
				Feed (ipm)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	135	RPM	8251	4126	2063	1375	1031	825	688	635
			(108-162)	Fr	0.0013	0.0027	0.0053	0.0080	0.0107	0.0133	0.0160	0.0173
				Feed (ipm)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{aligned} & \leq 200 \mathrm{Bhn} \\ & \text { or } \\ & \leq 13 \mathrm{HRc} \end{aligned}$	125	RPM	7640	3820	1910	1273	955	764	637	588
			(100-150)	Fr	0.0012	0.0025	0.0050	0.0075	0.0099	0.0124	0.0149	0.0162
				Feed (ipm)	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	90	RPM	5501	2750	1375	917	688	550	458	423
			(72-108)	Fr	0.0005	0.0011	0.0022	0.0033	0.0044	0.0055	0.0065	0.0071
				Feed (ipm)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	STAINLESS STEELS   (FREE MACHINING)   303, 416, 420F, 430F, 440F	$\begin{aligned} & \leq 185 \mathrm{Bhn} \\ & \text { or } \\ & \leq 9 \mathrm{HRc} \end{aligned}$	265	RPM	16197	8098	4049	2699	2025	1620	1350	1246
			(212-318)	Fr	0.0008	0.0016	0.0032	0.0048	0.0064	0.0080	0.0096	0.0104
				Feed (ipm)	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	170	RPM	10390	5195	2598	1732	1299	1039	866	799
			(136-204)	Fr	0.0006	0.0013	0.0025	0.0038	0.0050	0.0063	0.0075	0.0081
				Feed (ipm)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
	STAINLESS STEELS (DIFFICULT)   304, 316, 321, 13-8 PH,   15-5PH, 17-4 PH, Custom 450	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	130	RPM	7946	3973	1986	1324	993	795	662	611
			(104-156)	Fr	0.0006	0.0013	0.0025	0.0038	0.0050	0.0063	0.0076	0.0082
				Feed (ipm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
		$\begin{aligned} & \leq 375 \mathrm{Bhn} \\ & \text { or } \\ & \leq 40 \mathrm{HRc} \end{aligned}$	95	RPM	5806	2903	1452	968	726	581	484	447
			(76-114)	Fr	0.0006	0.0011	0.0023	0.0034	0.0045	0.0057	0.0068	0.0074
				Feed (ipm)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
	GRAY CAST IRONS	$\begin{gathered} \leq 220 \mathrm{Bhn} \\ \text { or } \\ \leq 19 \mathrm{HRc} \end{gathered}$	250	RPM	15280	7640	3820	2547	1910	1528	1273	1175
			(200-300)	Fr	0.0016	0.0031	0.0063	0.0094	0.0126	0.0157	0.0188	0.0204
				Feed (ipm)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
	DUCTILE CAST IRONS	$\begin{gathered} \leq 260 \mathrm{Bhn} \\ \text { or } \\ \leq 26 \mathrm{HRc} \end{gathered}$	220	RPM	13446	6723	3362	2241	1681	1345	1121	1034
			(176-264)	Fr	0.0015	0.0030	0.0059	0.0089	0.0119	0.0149	0.0178	0.0193
				Feed (ipm)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0


			$\begin{gathered} \text { Vc } \\ (\mathbf{s f m}) \end{gathered}$		DC - in							
	Fractional	Hardness			1/16	1/8	1/4	3/8	1/2	5/8	3/4	13/16
N	ALUMINUM ALLOYS (WROUGHT) 2024, 6061, 7075	$\begin{gathered} \leq 150 \text { Bhn } \\ \text { or } \\ \leq 88 \mathrm{HRb} \end{gathered}$	475	RPM	29032	14516	7258	4839	3629	2903	2419	2233
			(380-570)	Fr	0.0016	0.0031	0.0062	0.0093	0.0124	0.0155	0.0186	0.0202
				Feed (ipm)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
	ALUMINUM ALLOYS (CAST) A356, A380, 390	$\begin{gathered} \leq 140 \mathrm{Bhn} \\ \text { or } \\ \leq 3 \mathrm{HRc} \end{gathered}$	380	RPM	23226	11613	5806	3871	2903	2323	1935	1787
			(304-456)	Fr	0.0014	0.0028	0.0055	0.0083	0.0110	0.0138	0.0165	0.0179
				Feed (ipm)	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
S	TITANIUM ALLOYS   Pure Titanium, Ti6AI4V,   Ti6AI2Sn4Zr2Mo,   Ti4AI4Mo2Sn0.5Si,   Ti-6AI4V	$\begin{gathered} \leq 275 \text { Bhn } \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	175	RPM	10696	5348	2674	1783	1337	1070	891	823
			(140-210)	Fr	0.0007	0.0014	0.0028	0.0042	0.0055	0.0069	0.0083	0.0090
				Feed (ipm)	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
		$\begin{gathered} \leq 350 \mathrm{Bhn} \\ \text { or } \\ \leq 38 \mathrm{HRc} \end{gathered}$	130	RPM	7946	3973	1986	1324	993	795	662	611
			(104-156)	Fr	0.0006	0.0013	0.0025	0.0038	0.0050	0.0063	0.0076	0.0082
				Feed (ipm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
		$\begin{aligned} & \leq 440 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	70	RPM	4278	2139	1070	713	535	428	357	329
			(56-84)	Fr	0.0005	0.0009	0.0019	0.0028	0.0037	0.0047	0.0056	0.0061
				Feed (ipm)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
H	Alloy Steels 4140, 4150, 4320, 5120, 5150, 8630, 86L20, 50100	$\begin{gathered} \leq 450 \text { Bhn } \\ \text { or } \\ \leq 48 \mathrm{HRc} \end{gathered}$	95	RPM	5806	2903	1452	968	726	581	484	447
			(76-114)	Fr	0.0008	0.0016	0.0031	0.0047	0.0062	0.0078	0.0093	0.0101
				Feed (ipm)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
	TOOL STEELS   A2, D2, H13, L2, M2,   P20, S7, T15, W2	$\begin{gathered} \leq 475 \text { Bhn } \\ \text { or } \\ \leq 50 \mathrm{HRc} \end{gathered}$	80	RPM	4890	2445	1222	815	611	489	407	376
			(64-96)	Fr	0.0007	0.0014	0.0029	0.0043	0.0057	0.0072	0.0086	0.0093
				Feed (ipm)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5

reduce rates when material is harder than listed, when drilling conditions are not optimum, or coolant is not available
rates shown are for drilling into a flat surface and should be lowered using the reducion multiplier when the workpiece is angled or curved
reduce rates 10 to 20 percent when using drills without internal coolant
always use the shortest overhang possible
longer drills may require a spot drill operation to avoid walking on entry
internal coolant required in ISO S and M material groups or when drilling depth exceeds 3xD
Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
$\mathrm{rpm}=\mathrm{Vc} \times 3.82 / \mathrm{DC}$
$i p m=\operatorname{Fr} \times \mathrm{rpm}$
speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

	reduction multiplier	
angle $^{\circ}$	speed x	feed x
up to 30	1.0	0.6
over 30	0.7	0.4

METRIC

	Series 146U, 136U Metric	Hardness	$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{mm}) \\ \hline \end{gathered}$		DC•mm							
					1.5	3	6	8	10	12	16	20
	CARBON STEELS 1018, 1040, 1080, 1090, 10L50, 1140, 1212, 12L15, 1525, 1536	$\begin{gathered} \leq 175 \mathrm{Bhn} \\ \text { or } \\ \leq 7 \mathrm{HRc} \end{gathered}$	87	RPM	18419	9209	4605	3454	2763	2302	1727	1381
			(69-104)	Fr	0.037	0.074	0.149	0.199	0.248	0.298	0.397	0.496
				Feed (mm/min)	686	686	686	686	686	686	686	686
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	78	RPM	16480	8240	4120	3090	2472	2060	1545	1236
			(62-93)	Fr	0.032	0.065	0.129	0.173	0.216	0.259	0.345	0.432
				Feed (mm/min)	533	533	533	533	533	533	533	533
		$\begin{gathered} \leq 425 \text { Bhn } \\ \text { or } \\ \leq 45 \mathrm{HRc} \end{gathered}$	44	RPM	9371	4686	2343	1757	1406	1171	879	703
			(35-53)	Fr	0.027	0.054	0.108	0.145	0.181	0.217	0.289	0.361
				Feed (mm/min)	254	254	254	254	254	254	254	254
	ALLOY STEELS   4140, 4150, 4320, 5120,   5150, 8630, 86L20, 50100	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	67	RPM	14218	7109	3555	2666	2133	1777	1333	1066
P			(54-80)	Fr	0.036	0.071	0.143	0.191	0.238	0.286	0.381	0.476
				Feed (mm/min)	508	508	508	508	508	508	508	508
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	41	RPM	8725	4362	2181	1636	1309	1091	818	654
			(33-49)	Fr	0.032	0.064	0.128	0.171	0.213	0.256	0.342	0.427
				Feed (mm/min)	279	279	279	279	279	279	279	279
	TOOL STEELS   A2, D2, H13, L2, M2,   P20, S7, T15, W2	$\begin{aligned} & \leq 200 \text { Bhn } \\ & \text { or } \\ & \leq 13 \mathrm{HRc} \end{aligned}$	38	RPM	8078	4039	2020	1515	1212	1010	757	606
			(30-46)	Fr	0.030	0.060	0.119	0.159	0.199	0.239	0.319	0.398
				Feed (mm/min)	241	241	241	241	241	241	241	241
		$\begin{gathered} \leq 375 \text { Bhn } \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	27	RPM	5816	2908	1454	1091	872	727	545	436
			(22-33)	Fr	0.013	0.026	0.052	0.070	0.087	0.105	0.140	0.175
				Feed (mm/min)	76	76	76	76	76	76	76	76
M	STAINLESS STEELS (FREE MACHINING) 303, 416, 420F, 430F, 440F	$\begin{gathered} \leq 185 \text { Bhn } \\ \text { or } \\ \leq 9 \mathrm{HRc} \end{gathered}$	81	RPM	17126	8563	4282	3211	2569	2141	1606	1284
			(65-97)	Fr	0.019	0.039	0.077	0.103	0.129	0.154	0.206	0.257
				Feed (mm/min)	330	330	330	330	330	330	330	330
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	52	RPM	10987	5493	2747	2060	1648	1373	1030	824
			(41-62)	Fr	0.015	0.030	0.060	0.080	0.100	0.120	0.160	0.200
				Feed (mm/min)	165	165	165	165	165	165	165	165
	STAINLESS STEELS   (DIFFICULT)   304, 316, 321, 13-8 PH,   15-5PH, 17-4 PH, Custom 450	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	40	RPM	8402	4201	2100	1575	1260	1050	788	630
			(32-48)	Fr	0.015	0.030	0.060	0.081	0.101	0.121	0.161	0.202
				Feed (mm/min)	127	127	127	127	127	127	127	127
		$\begin{gathered} \leq 375 \text { Bhn } \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	29	RPM	6140	3070	1535	1151	921	767	576	460
			(23-35)	Fr	0.014	0.027	0.055	0.073	0.091	0.109	0.146	0.182
				Feed (mm/min)	84	84	84	84	84	84	84	84
K	GRAY CAST IRONS	$\begin{aligned} & \leq 220 \text { Bhn } \\ & \text { or } \\ & \leq 19 \mathrm{HRc} \end{aligned}$	76	RPM	16157	8078	4039	3029	2424	2020	1515	1212
			(61-91)	Fr	0.038	0.075	0.151	0.201	0.252	0.302	0.402	0.503
				Feed (mm/min)	610	610	610	610	610	610	610	610
	DUCTILE CAST IRONS	$\begin{gathered} \leq 260 \mathrm{Bhn} \\ \text { or } \\ \leq 26 \mathrm{HRc} \end{gathered}$	67	RPM	14218	7109	3555	2666	2133	1777	1333	1066
			(54-80)	Fr	0.036	0.071	0.143	0.191	0.238	0.286	0.381	0.476
				Feed (mm/min)	508	508	508	508	508	508	508	508
											ntinued	ext pag


	Series 146U, 136U Metric	Hardness	$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{mm}) \end{gathered}$		DC - mm							
					1.5	3	6	8	10	12	16	20
N	ALUMINUM ALLOYS (WROUGHT) 2024, 6061, 7075	$\begin{aligned} & \leq 150 \text { Bhn } \\ & \text { or } \\ & \leq 88 \mathrm{HRb} \end{aligned}$	145	RPM	30698	15349	7675	5756	4605	3837	2878	2302
			(116-174)	Fr	0.037	0.074	0.149	0.199	0.248	0.298	0.397	0.496
				Feed (mm/min)	1143	1143	1143	1143	1143	1143	1143	1143
	ALUMINUM ALLOYS (CAST) A356, A380, 390	$\begin{gathered} \leq 140 \text { Bhn } \\ \text { or } \\ \leq 3 \mathrm{HRc} \end{gathered}$	116	RPM	24559	12279	6140	4605	3684	3070	2302	1842
			(93-139)	Fr	0.033	0.066	0.132	0.177	0.221	0.265	0.353	0.441
				Feed (mm/min)	813	813	813	813	813	813	813	813
S	TITANIUM ALLOYS   Pure Titanium, Ti6AI4V,   Ti6A12Sn4Zr2Mo,   Ti4AI4Mo2Sn0.5Si,   Ti-6AI4V	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	53	RPM	11310	5655	2827	2121	1696	1414	1060	848
			(43-64)	Fr	0.017	0.033	0.066	0.089	0.111	0.133	0.177	0.222
				Feed (mm/min)	188	188	188	188	188	188	188	188
		$\begin{gathered} \leq 350 \text { Bhn } \\ \text { or } \\ \leq 38 \mathrm{HRc} \end{gathered}$	40	RPM	8402	4201	2100	1575	1260	1050	788	630
			(32-48)	Fr	0.015	0.030	0.060	0.081	0.101	0.121	0.161	0.202
				Feed (mm/min)	127	127	127	127	127	127	127	127
		$\begin{aligned} & \leq 440 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	21	RPM	4524	2262	1131	848	679	565	424	339
			(17-26)	Fr	0.011	0.022	0.045	0.060	0.075	0.090	0.120	0.150
				Feed (mm/min)	51	51	51	51	51	51	51	51
H	Alloy Steels 4140, 4150, 4320, 5120, 5150, 8630, 86L20, 50100	$\begin{aligned} & \leq 450 \text { Bhn } \\ & \text { or } \\ & \leq 48 \mathrm{HRc} \end{aligned}$	29	RPM	6140	3070	1535	1151	921	767	576	460
			(23-35)	Fr	0.019	0.037	0.074	0.099	0.124	0.149	0.199	0.248
				Feed (mm/min)	114	114	114	114	114	114	114	114
	TOOL STEELS   A2, D2, H13, L2, M2,   P20, S7, T15, W2	$\begin{aligned} & \leq 475 \mathrm{Bhn} \\ & \quad \text { or } \\ & \leq 50 \mathrm{HRc} \end{aligned}$	24	RPM	5170	2585	1293	969	776	646	485	388
			(20-29)	$\mathrm{Fr}$	0.017	0.034	0.069	0.092	0.115	0.138	0.183	0.229
				Feed (mm/min)	89	89	89	89	89	89	89	89

reduce rates when material is harder than listed, when drilling conditions are not optimum, or coolant is not available
rates shown are for drilling into a flat surface and should be lowered using the reducion multiplier when the workpiece is angled or curved
reduce rates 10 to 20 percent when using drills without internal coolant
always use the shortest overhang possible
longer drills may require a spot drill operation to avoid walking on entry
internal coolant required in ISO S and M material groups or when drilling depth exceeds 3xD
Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
$\mathrm{rpm}=(\mathrm{Vc} \times 1000) /(\mathrm{DC} \times 3.14)$
$\mathrm{mm} / \mathrm{min}=\mathrm{Fr} \times \mathrm{rpm}$
speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

	reduction multiplier	
angle $^{\circ}$	speed x	feed x
up to 30	1.0	0.6
over 30	0.7	0.4

solid carbide cutting tool technology for the aerospace, metalworking, and automotive industries with manufacturing sites in the United States and United Kingdom. Our global network of Sales Representatives, Industrial Distributors, and Agents blanket the world selling into more than 60 countries.

## LEADERS IN SOLID CARBIDE

TOOL TECHNOLOGY
Brand names such as Z-Carb, S-Carb ${ }^{\oplus}$, V-Carb, Hi-PerCarb ${ }^{\oplus}$, Multi-Carb have become synonymous with high performance tooling in the machining and metalworking industry.

We're proud to have pioneered some of the world's most advanced cutting technology right here on our Northeast Ohio manufacturing campus. KSPT high performance end mills, drills and routers are increasing productivity and reducing cost around the world.

## EXCEEDING CUSTOMER EXPECTATIONS

As the world's manufacturing needs change, so does KSPT. It's all about the science, starting with our lab inspected substrate materials to our tool designs and coatings. Our exceptional team of researchers, engineers, and machinists are dedicated to developing the absolute best and delivering the ultimate Value at the Spindle ${ }^{\circledR}$.

- Incredible batch-to-batch consistency
- Metallurgical lab dedicated to testing and rigorous quality control
- ISO 9001:2015 Certified quality procedures
- Patented geometries that extend tool life, reduce chatter, cut cycle times, and improve part quality-even at extreme parameters
- Specialists in extreme and demanding product applications
- Comprehensive tooling services
- Experienced Field Sales Engineers who work to optimize a tool for your particular application
- Dedicated multi-lingual customer service representatives

SGS PRODUCTS ARE DISTRIBUTED BY:
$\square$

Solid Carbide Tools

## UNITED STATES OF AMERICA

KYOCERA SGS Precision Tools 150 Marc Drive
Cuyahoga Falls, Ohio 44223 U.S.A.
customer service -
US and Canada: (330) 686-5700
fax - US \& Canada: (800) 447-4017 international fax: (330) 686-2146 orders: sales@kyocera-sgstool.com web: www.kyocera-sgstool.com

## VALUE AT THE SPINDLE

## UNITED KINGDOM

KYOCERA SGS Precision Tools Europe Ltd.
10 Ashville Way
Wokingham, Berkshire
RG41 2PL England
phone: (44) 1189-795-200
fax: (44) 1189-795-295
e-mail: SalesEU@kyocera-sgstool.com
web: www.kyocera-sgstool.co.uk

## JAPAN

KYOCERA Corporation
International Sales Dept.
6 Takeda Tobadono-cho,
Fushimi-ku, Kyoto 612-8501, Japan
phone: +81-75-604-3473
fax: +81-75-604-3472
web: global.kyocera.com/prdct/tool/index.html

## COMMERCIAL OFFICES

## EASTERN EUROPE

SINTCOM
Sintcom Tools
95 Arsenalski Blvd.
1421 Sofia, Bulgaria
phone: (359) 283-64421
fax: (359) 286-52493
e-mail: sintcom@sintcomtools.com

## FRANCE

DOGA Usinage
8, Avenue Gutenberg CS 50510
78317 Maurepas Cedex - France
phone:+33130664141
e-mail: usinage-outils@doga.fr

## GERMANY

KADIGO Tool Systems GmbH
Walramster. 27
65510 Idstein, Germany
phone: +49 83769287238
fax: +49 83769287237
e-mail: info@kadigo-ts.com

## INDIA

KYOCERA Asia Pacific India Pvt. Ltd Plot No.51, Phase-I,
Udyog Vihar Gurgaon 122016,
Haryana, India
phone: +91-124-4025022
fax: +91-124-4025001

## KOREA

KYOCERA Precision Tools Korea Co., Ltd. 2LT 69BL, Namdong Industrial Estate, 638-1, Kozan-Dong, Namdong Incheon, Korea
phone: +82-32-821-8365
fax: +82-32-821-8369
web: www.kptk.co.kr/

## POLAND

KYOCERA SGS Precision Tools
phone: +48530 432002
e-mail: SalesEU@kyocera-sgstool.com

## RUSSIA

HALTEC
phone: (7) 495-252-05-00
e-mail: info@haltec.ru
web: www.haltec.ru

## SPAIN

KYOCERA SGS Precision Tools IBERICA
e-mail: SalesEU@kyocera-sgstool.com

## THAILAND

KYOCERA Asia Pacific (Thailand) Co., Ltd.
1 Capital Work Place Building
7th Floor, Soi Chamchan, Sukhumvit
55 Road, Klongton Nua, Wattana,
Bangkok 10110, Thailand
phone: +66-2-030-6688
fax: +66-2-030-6600

## SINGAPORE

KYOCERA Asia Pacific Pte. Ltd.
298 Tiong Bahru Road, \#13-03/05 Central Plaza, Singapore 168730
phone: +65-6373-6700
fax: +65-6271-0600
web: asia.kyocera.com/products/cuttingtools/ index.html

## CHINA

KYOCERA (China) Sales \& Trading Corporation
Room 140, Building A3, Daning Central Square,
No. 700 Wanrong Road,
Zhabei District, Shanghai, 200072,
P.R. China
phone: +86-21-3660-7711
fax: +86-21-568-6200
web: www.kyocera.com.cn/prdct/cuttingtool

